https://www.selleckchem.com/products/sr-4835.html Structural biologists have traditionally approached cellular complexity in a reductionist manner in which the cellular molecular components are fractionated and purified before being studied individually. This 'divide and conquer' approach has been highly successful. However, awareness has grown in recent years that biological functions can rarely be attributed to individual macromolecules. Most cellular functions arise from their concerted action, and there is thus a need for methods enabling structural studies performed in situ, ideally in unperturbed cellular environments. Cryo-electron tomography (Cryo-ET) combines the power of 3D molecular-level imaging with the best structural preservation that is physically possible to achieve. Thus, it has a unique potential to reveal the supramolecular architecture or 'molecular sociology' of cells and to discover the unexpected. Here, we review state-of-the-art Cryo-ET workflows, provide examples of biological applications, and discuss what is needed to realize the full potential of Cryo-ET.In the 4.5 decades since Altmann (1974) published her seminal paper on the methods for the observational study of behaviour, automated detection and analysis of social interaction networks have fundamentally transformed the ways that ecologists study social behaviour. Methodological developments for collecting data remotely on social behaviour involve indirect inference of associations, direct recordings of interactions and machine vision. These recent technological advances are improving the scale and resolution with which we can dissect interactions among animals. They are also revealing new intricacies of animal social interactions at spatial and temporal resolutions as well as in ecological contexts that have been hidden from humans, making the unwatchable seeable. We first outline how these technological applications are permitting researchers to collect exquisitely detailed informa