https://www.selleckchem.com/ Baohuoside I, a novel oncotherapeutic agent, has been reported to have anti-cancer effects on a variety of cancers, but its role in glioma and its molecular mechanism are still unclear. The proliferation of U251 cells was detected by real-time cellular analysis (RTCA), CCK-8, Ki67 immunofluorescence and colony formation assay. The effect of Baohuoside I on the invasion and migration of U251 cells was measured by transwell and scratch tests. The apoptosis of U251 cells was detected by flow cytometry. The expression level of related protein was detected by western blotting. Baohuoside I could inhibit the proliferation of human glioma cells and induce apoptosis. Further study showed that the migration and invasion ability of glioma was significantly decreased by Baohuoside I. Western blot revealed the expression of p-AMPKα1 protein was up-regulated, and the expression of p-mTOR and p-S6K was down-regulated after Baohuoside I treatment. Tumorigenesis in nude mice showed that Baohuoside I had an anti-glioma effect in vivo. We propose a natural product, which can inhibit the proliferation, invasion and migration of glioma and may be a valuable anti-tumor candidate. The inhibitory effect of Baohuoside I on the glioma is achieved by inducing the apoptosis of the tumor cells, rather than autophagy. In addition, the pathway to induce cell apoptosis of Baohuoside I is to target the mTOR signal. We propose a natural product, which can inhibit the proliferation, invasion and migration of glioma and may be a valuable anti-tumor candidate. The inhibitory effect of Baohuoside I on the glioma is achieved by inducing the apoptosis of the tumor cells, rather than autophagy. In addition, the pathway to induce cell apoptosis of Baohuoside I is to target the mTOR signal. Cervical cancer is a common gynecologic cancer, and no study has been reported on the way through which lncRNA SNHG1, miR-195 and NEK2 jointly affect cervical cancer cells (CCCs), so this pap