https://www.selleckchem.com/products/ly3039478.html 5. Both groups showed a significant difference between all pre- and postoperative clinical outcome scores, but no significant difference between BMS groups postoperatively. The return to sport rate was 90% for primary cases and 83% for secondary cases ( = 0.6). All patients returned to work. Lesion filling on CT was complete (67% to 100%) in 59% of primary cases and 67% of secondary cases ( = 0.6). No differences in outcomes were observed between arthroscopic bone marrow stimulation in primary and secondary OLTs at 1-year follow-up. Repeat BMS may therefore be a viable treatment option for failed OLTs in the short term. No differences in outcomes were observed between arthroscopic bone marrow stimulation in primary and secondary OLTs at 1-year follow-up. Repeat BMS may therefore be a viable treatment option for failed OLTs in the short term.In automated laboratories consisting of multiple different types of instruments, scheduling algorithms are useful for determining the optimal allocations of instruments to minimize the time required to complete experimental procedures. However, previous studies on scheduling algorithms for laboratory automation have not emphasized the time constraints by mutual boundaries (TCMBs) among operations, which is important in procedures involving live cells or unstable biomolecules. Here, we define the "scheduling for laboratory automation in biology" (S-LAB) problem as a scheduling problem for automated laboratories in which operations with TCMBs are performed by multiple different instruments. We formulate an S-LAB problem as a mixed-integer programming (MIP) problem and propose a scheduling method using the branch-and-bound algorithm. Simulations show that our method can find the optimal schedules of S-LAB problems that minimize overall execution time while satisfying the TCMBs. Furthermore, we propose the use of our scheduling method for the simulation-based design of job definitio