A recently characterized fungal pathogen, Emydomyces testavorans, has been associated with ulcerative shell disease and significant morbidity in Western pond turtles. Voriconazole is a second-generation triazole antifungal medication that prevents fungal growth through disruption of ergosterol synthesis, causing abnormalities in the fungal cell membrane. Preliminary reports of minimum inhibitory concentrations (MIC) indicate that voriconazole is effective in vitro against E. testavorans. Ultraperformance liquid chromatography was used to measure voriconazole plasma concentrations in blood samples from healthy Western pond turtles after administration of a single SC injection of 10 mg/kg and after multiple doses (10 mg/kg SC q48h for seven doses). The data were analyzed using a naïve pooled approach. Mean (SE) observed time to maximum concentration was 2 (0.18) h for a single dose and 50 (2.2) h for multiple doses; the multiple-dose trial observed mean (SE) maximum concentration was 12.4 (2.2) µg/ml, and observed mean (SE) trough concentration was 1.7 (0.7) µg/ml. Multifocal skin sloughing following the single-dose trial was observed in one turtle and there was a significant increase in polychromatophilic cells amongst the study turtles after the multiple-dose voriconazole trial. No other adverse effects were observed. When voriconazole was administered at 10 mg/kg SC q48h, observed trough plasma concentrations were consistently higher than reported E. testavorans MIC concentrations. Further study is needed to determine the clinical safety and in vivo efficacy of this dose in Western pond turtles.Postoperative antinociception control in fish is currently suboptimal, as commonly used antiinflammatory drugs last for only a few hours at tested temperatures. Therefore, long-acting anti-inflammatory drugs, such as robenacoxib, could improve the welfare of fish. The pharmacokinetics, duration of antinociceptive action, and potential adverse effects of robenacoxib were evaluated through two prospective randomized blinded trials in rainbow trout (Oncorhynchus mykiss). Six healthy rainbow trout received a single IM administration of robenacoxib (2 mg/kg), and two control fish received the same volume of saline IM. Blood samples were collected at predetermined time points for 5 d. Plasma robenacoxib concentrations were measured using high-performance liquid chromatography-high-resolution hybrid orbitrap mass spectrometry and noncompartmental pharmacokinetic analysis. Ten additional rainbow trout received an intralabial injection of 0.05 ml of 2% acetic acid following a previously validated nociceptive model. The treated group (n = 6) received 2 mg/kg of robenacoxib IM and the control group (n = 4) received an equivalent volume of saline IM. The behavior, appetite, and opercular rate of the fish were evaluated every hour for 5 h, then once daily for 3 d. All 12 treated trout and 6 controls underwent histopathologic evaluation. Average maximum plasma concentration (Cmax) was 329.9 ± 137.3 ng/ml observed at 2.1 ± 0.7 h (Tmax) and terminal half-life was 12.6 ± 2.27 h. Plasma concentrations described as antinociceptive in domestic carnivores were measured for 3-4 d. This dose was associated with a significant decrease in rocking behavior (P = 0.017). No adverse effects were detected clinically nor on histopathology. Robenacoxib administered IM at 2 mg/kg appears to be safe and may provide an antinociceptive effect in rainbow trout. This study presents a new therapeutic option to provide long-lasting antinociception in rainbow trout.In this pilot study, the pharmacokinetics of terbinafine were determined in six apparently healthy red-eared slider turtles (Trachemys scripta elegans) after a single PO administration. https://www.selleckchem.com/products/mitoquinone-mesylate.html Terbinafine suspension (15 mg/kg, once) was administered via gavage tube to all turtles. Blood samples were collected immediately before (time 0) and at 1, 2, 4, 8, 24, and 48 h after drug administration. Plasma terbinafine concentrations were quantified by ultra-performance liquid chromatography-mass spectrometry, and noncompartmental pharmacokinetic analysis was performed. None of the animals showed any adverse responses following terbinafine administration. Mean area under the curve from time 0 to 24 h was 1,213 h × ng/ml (range 319-7,309), mean peak plasma concentration was 201.5 ng/ml (range 45.8-585.3), mean time to maximum plasma concentration was 1.26 h (range 1-4), mean residence time was 7.71 h (range 3.85-14.8), and mean terminal half-life was 5.35 h (range 2.67-9.83). The administration of terbinafine (15 mg/kg, PO) may be appropriate for treatment of select fungal organisms with low minimum inhibitory concentrations in red-eared slider turtles but may require q12h administration even for organisms with low minimum inhibitory concentrations. Multiple-dose studies as well as clinical studies are needed to determine ideal dosages and efficacy.Pinniped hearts have been well described via dissection, but in vivo measurements of cardiac structure, function, and electrophysiology are lacking. Electrocardiograms (ECGs) were recorded under anesthesia from eight Steller sea lions (Eumetopias jubatus), five northern fur seals (Callorhinus ursinus), and one walrus (Odobenus rosmarus) to investigate cardiac electrophysiology in pinnipeds. In addition, echocardiograms were performed on all eight anesthetized Steller sea lions to evaluate in vivo cardiac structure and function. Measured and calculated ECG parameters included P-wave, PQ, QRS, and QT interval durations, P-, R-, and T-wave amplitudes, P- and T-wave polarities, and the mean electrical axis (MEA). Measured and calculated echocardiographic parameters included left ventricular internal diameter, interventricular septum thickness, and left ventricular posterior wall thickness in systole and diastole (using M-mode), left atrium and aortic root dimensions (using 2D), and maximum aortic and pulmonary flow velocities (using pulsed-wave spectral Doppler). ECG measurements were similar to those reported for other pinniped species, but there was considerable variation in the MEAs of Steller sea lions and northern fur seals. Echocardiographic measurements were similar to those reported for southern sea lions (Otaria flavenscens), including five out of eight Steller sea lions having a left atrial to aortic root ratio less then 1, which may indicate that they have an enlarged aortic root compared to awake terrestrial mammals. Isoflurane anesthesia likely affected some of the measurements as evidenced by the reduced fractional shortening found in Steller sea lions compared to awake terrestrial mammals. The values reported are useful reference points for assessing cardiac health in pinnipeds under human care.