https://www.selleckchem.com/JAK.html In terms of categories, metallic toys and children's jewelry still have the most severe PTE contamination and the presence of Pb and Cd in these articles is an ongoing issue. Some studies suggest that color can be used as an indicator for the potential presence of PTEs (linked to chemicals such as lead chromate, cadmium sulfide) but the evidence is not always clear. Another concern is vintage/second-hand toys and jewelry as those items might have been produced before the legislation was present. As total and bioaccessible concentrations of PTEs in toys and jewelry do not always correlate, approaches considering bioaccessibility (e.g. of the E.U.) are more scientifically appropriate and help with better estimation of risk from exposure. Studies on toy and jewelry contamination using in vitro bioaccessibility techniques has become more common, however, there is still no in vitro test specifically designed and validated for toys and jewelry. Interactions between aromatic pollutants (APs) and porphyrin nucleus as physiological receptors have a significant effect on biological functions of porphyrin-based systems in organism. However, the details on the interaction at molecule level are still elusive. Herein, interaction mechanisms between two typical APs (methylene blue, MB and benzo[a]pyrene, B[a]P) and meso-tetra (4-carboxyphenyl) porphine (TCPP) as physiological receptors were systematically investigated. Adsorption behaviors of TCPP to B[a]P was dominated by pi-pi interaction, while interaction between TCPP and MB coupled with a multi-force field including hydrophobic, pi-pi, electrostatic, and H-bonding interactions. The relative contributions of these four forces obeyed an order H-bonding > pi-pi > electrostatic > hydrophobic, regardless of the pH value and the initial concentration of MB. H-bonding assisted by hydrogen/hydroxide ion was the most influential force. According to the effect of pH and temperature, organisms expose