The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complexes of AcIII with H2O, dimethyl sulfoxide (DMSO), OH-, and F- as axial ligands were studied using density functional theory. Formation of the [AcIII(DOTA)(OH)]2- and [AcIII(DOTA)(F)]2- complexes is predicted to be significantly more favorable than that of [AcIII(DOTA)(H2O)]- and [AcIII(DOTA)(DMSO)]- because of the enhanced relative Gibbs free energies. Further electronic structure analyses demonstrate that the type and nature of the bond between Ac and the ligand donor atom is the main driving force that determines the thermodynamic stability of the complexes. Specifically, the [AcIII(DOTA)]- complex strongly binds to OH- and F- via covalent bonds, while the bonding to H2O and DMSO is ionic and relatively weaker.Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene WBceGO-B3S1 from a variant BceGO-B3S1 and a glyphosate-tolerant gene I. variabilis-EPSPS* from the bacterium Isoptericola variabilis were transformed into an Oryza sativa subsp. geng rice variety Zhonghua11 by Agrobacterium-mediated genetic transformation. Molecular detection and field agronomic trait analysis contributed to the selection of three homozygous lines with stable expression of a single copy of the transferred genes integrated into the intergenic region. Under the treatment of glyphosate at a test amount in the field, transgenic lines exhibited no differences in agronomic traits. https://www.selleckchem.com/products/ly333531.html Under the treatment by 3600 g ha-1 glyphosate, the glyphosate residues in the aboveground tissues of the three candidate transgenic homozygous lines were significantly lower than those in the transgenic homozygous line with I. variabilis-EPSPS* alone at 1, 5, and 10 days. The transgenic line coexpressing I. variabilis-EPSPS* and WBceGO-B3S1 has great application value in breeding of transgenic rice varieties with high glyphosate resistance and low glyphosate residues. This study is a step forward in solving the problem of herbicide residues in food crops by taking advantage of genes that degrade glyphosate.High-performance formaldehyde sensors play an important role in air quality assessment. Herein, a self-assembled monolayer (SAM) sensor for trace formaldehyde (FA) is fabricated based on the fluorescence enhancement of oxidized thiophene derivatives. In the primary SAM molecules, the functional backbone trithiophene (3T) links to the anchor through an n-propyl group. The anchor with an active Si-Cl bond can form a covalent bond with the SiO2 substrate by solution incubation, which ensures good stability against organic solvents and high sensitivity via monolayer structures. With the alkyl chain's leading, a dense 3T SAM can be obtained on SiO2. Upon exposure to UV light in the presence of oxygen, 3T can be oxidized into a nonfluorescent but coordination-active product with abundant carbonyl groups, which can be doped with FA and induce a blueshifted fluorescence. With this mechanism, we proposed an SAM-based FA sensor by detecting the enhancement of the blueshifted fluorescence. Reliable reversibility, selectivity, stability, and detection limit lower than 1 ppm are achieved in this system. The work provides an experimental basis for developing a cheap, efficient, and flexible sensor for trace FA detection.Apart from being the most common mechanism of regulating protein function and transmitting signals throughout the cell, phosphorylation has an ability to induce disorder-to-order transition in an intrinsically disordered protein. In particular, it was shown that folding of the intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can be induced by multisite phosphorylation. Here, the principles that govern the folding of phosphorylated 4E-BP2 (pT37pT46 4E-BP218-62) are investigated by analyzing canonical and replica exchange molecular dynamics trajectories, generated with the coarse-grained united-residue force field, in terms of local and global motions and the time dependence of formation of contacts between Cαs of selected pairs of residues. The key residues involved in the folding of the pT37pT46 4E-BP218-62 are elucidated by this analysis. The correlations between local and global motions are identified. Moreover, for a better understanding of the physics of the formation of the folded state, the experimental structure of the pT37pT46 4E-BP218-62 is analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. It is shown that without molecular dynamics simulations the kinks are able to identify not only the phosphorylated sites of protein, the key players in folding, but also the reasons for the weak stability of the pT37pT46 4E-BP218-62.Three known compounds, 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-isobutyrate (1), 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-phenylacetate (2), and 4-deoxy-4β-phorbol-12-tiglate-13-phenylacetate (3), were reisolated from the latex of Euphorbia umbellata through a bioguided fractionation process to target HIV-1 latency reactivation. The in vitro bioassay using infected T-cell lymphoblasts (J-Lat 10.6), complemented with surface CD4 receptor downregulation assessment, led to isolation of the compounds as a highly active ternary mixture. Effective purification of the individual compounds was achieved by first subjecting a phorbol-enriched fraction (previously prepared from crude latex) to MPLC, followed by semipreparative HPLC and characterization by 1D and 2D NMR spectroscopy and (+)-HRESIMS. Compared with a positive control, the isolated compounds were effective in reactivating 68-75% of the virus latency in the range of 9.7-0.097 μM for compound 1, 8.85-0.088 μM for compound 2, and 9.1-0.091 μM for compound 3, with the latter maintaining steady effectiveness down to a 10-5 dilution. Accordingly, compound 3 may serve as a promising lead compound for the development of anti-HIV drugs based on latency reactivation therapy.