https://www.selleckchem.com/products/cd532.html While drug-eluting stents containing anti-proliferative agents inhibit proliferation of smooth muscle cells (SMCs), they also delay the regrowth of the endothelial cells which can result in subsequent development of restenosis. Acidic extracellular environments promote cell anchorage and migration by inducing conformational change in integrins, the main cell adhesion proteins. This study addresses the feasibility of a citric acid (CA) functionalized nitinol stent for improving vascular biocompatibility, specifically enhancing endothelialization. CA functionalized nitinol vascular stents are compared to commercial bare metal (Zilver Flex) and paclitaxel eluting stents (Zilver PTX) in terms of re-endothelialization. To study the effect of stent coatings, a stent conditioned media methodology was developed in an attempt to represent in vivo conditions. Overall, distinct advantages of the CA functionalized nitinol stent over commercial Zilver PTX DES and Zilver Flex BMS stents in terms of endothelial cell adhesion, migration, and proliferation are reported. These novel findings indicate the potential of a CA functionalized stent to serve as a bioactive and therapeutic surface for re-endothelialization, perhaps in combination with a SMC proliferation inhibitor coating, to prevent restenosis.The mortality of high-grade serous ovarian cancer (HGSOC) accounts for 70% to 80% of all ovarian cancer deaths and overall mortality rate has not declined in the last decade. Recently, many studies have demonstrated that HGSOC originates from the fallopian tubes. The extracellular matrix (ECM) is present in all tissues, its remodeling and interaction with cells are crucial for regulating cell proliferation, migration, and differentiation. In this paper, we used label-free nonlinear optical microscopy to image tissues of the fallopian tube and ovary. Combining a set of image processing algorithms, we monitored the remodeling of ECM in the