https://www.selleckchem.com/products/sodium-l-ascorbyl-2-phosphate.html Responding to a radiological or nuclear incident may require assessing tens to hundreds of thousands of people for possible radionuclide contamination. The measurement of radioactive Sr is important because of its impact on people's health. The existing analytical method for urine Sr-90 analysis using crown ethers is laborious and involves possible exposure to concentrated acids; therefore, this work is devoted to the development of the automated Sr-90 separation process, which became possible with the prepFast pre-analytical system (Elemental Scientific, Inc).Radioactive strontium is a nuclear fission decay product found in industrial products and nuclear waste and is released during nuclear accidents. Current urine radiostrontium separation methods often are based on the use of Sr resin columns or cartridges (Eichrom Technologies). Most of these analytical methods use stable Sr as a tracer, with subsequent Sr recovery. The gravimetric recovery method requires 120 times more stable Sr than does the inductively coupled plasma mass spectrometry method described here. This difference can affect cartridge performance especially with aging cartridges.In the case of a radiological or nuclear incident, valuable information could be obtained in a timely manner by using Liquid Scintillation Counting (LSC) technique through fast screening of urine samples from potentially contaminated persons. This work describes the optimization of LSC parameters on PerkinElmer (PE) Tri-Carb and Quantulus GCT series instruments to develop a rapid method for screening urine in an emergency response situation.Nuclear industry advancements and growing concerns about environmental contamination and terrorist activity have increased interest in quantifying radioisotopes in environmental and human samples. Increased presence in the environment, ease of entry into the food chain, nuclear medicine applications, and the possibil