https://www.selleckchem.com/products/protosappanin-b.html Reliability across four 30-s balance trials within each of four balance conditions (firm vs. foam, eyes open vs. closed) was determined using intra-class correlation, standard error of measurement and minimal detectable change. ICCs were better, the standard error of measurement and minimal detectable change were smaller when the recurrence threshold was set to 5% using the fixed recurrence threshold. Fixing recurrence rate improves the within session reliability of RQA and could increase sensitivity to identify fall risk. Accurate foot placement is important for dynamic balance during activities of daily living. Disruption of sensory information and prosthetic componentry characteristics may result in increased locomotor task difficulty for individuals with lower limb amputation. This study investigated the accuracy and precision of prosthetic and intact foot placement during a targeted stepping task in individuals with unilateral transtibial amputation (IUTAs; N = 8, 47 ± 13 yrs), compared to the preferred foot of control participant's (N = 8, 33 ± 15 yrs). Participants walked along a 10-metre walkway, placing their foot into a rectangular floor-based target with dimensions normalised to a percentage of participant's foot length and width; 'standard' = 150% x 150%, 'wide' = 150% x 200%, 'long' = 200% x 150%. Foot placement accuracy (relative distance between foot and target centre), precision (between-trial variability), and foot-reach kinematics were determined for each limb and target, using three-dimensional motion capture. A significant foot-by-target interaction revealed less mediolateral foot placement accuracy for IUTAs in the wide target, which was significantly less accurate for the intact (28 ± 12 mm) compared to prosthetic foot (16 ± 14 mm). Intact peak foot velocity (4.6 ± 0.8 m.s-1) was greater than the prosthetic foot (4.5 ± 0.8 m.s-1) for all targets. Controls were more accurate and precise t