https://www.selleckchem.com/products/proteinase-k.html Targeted sequencing enables sensitive and cost-effective analysis by focusing resources on molecules of interest. Existing methods, however, are limited in enrichment power and target capture length. Here, we present a novel method that uses compound nucleic acid cytometry to achieve million-fold enrichments of molecules >10 kbp in length using minimal prior target information. We demonstrate the approach by sequencing HIV proviruses in infected individuals. Our method is useful for rare target sequencing in research and clinical applications, including for identifying cancer-associated mutations or sequencing viruses infecting cells.We now describe the physicochemical profiling, in vitro ADME, and antiparasitic activity of eight N,N'-diarylureas to assess their potential as a broad-spectrum antiprotozoal chemotype. Chromatographic LogD7.4 values ranged from 2.5 to 4.5; kinetic aq. solubilities were ≤6.3 μg/mL, and plasma protein binding ranged from 95 to 99%. All of the compounds had low intrinsic clearance values in human, but not mouse, liver microsomes. Although no N,N'-diarylurea had submicromolar potency against Trypanosoma cruzi, two had submicromolar potencies against Toxoplasma gondii and Trypanosoma brucei rhodesiense, and five had submicromolar potencies against Leishmania donovani. Plasmodium falciparum appeared to be the most susceptible to growth inhibition by this compound series. Most of the N,N'-diarylureas had antiprotozoal selectivities ≥10. One N,N'-diarylurea had demonstrable activity in mouse models of malaria and toxoplasmosis.We have explored the structural factors on the photophysical properties in two rhenium(I) diimine complexes in acetonitrile solution, cis,trans-[Re(dmb)(CO)2(PPh2Et)2]+ (Et(2,2)) and cis,trans-[Re(dmb)(CO)2(PPh3)2]+ ((3,3)) (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ph = phenyl, Et = ethyl) using the combination method of time-resolved infrared spectroscopy, time-resolved