https://www.selleckchem.com/products/gilteritinib-asp2215.html Lectins from Diocleinae subtribe species (family Leguminosae) are of special interest since they present a wide spectrum of biological activities, despite their high structural similarity. During their synthesis in plant cells, these proteins undergo post-translational processing resulting in the formation of three chains (α, β, γ), which constitute the lectins' subunits. Furthermore, such wild-type proteins are presented as isolectins or with different combinations of these chains, which undermine their biotechnological potential. Thus, the present study aimed to produce a recombinant form of the lectin from Dioclea sclerocarpa seeds (DSL), exclusively constituted by α-chain. The recombinant DSL (rDSL) was successfully expressed in E. coli BL21 (DE3) and purified by affinity chromatography (Sephadex G-50), showing a final yield of 74 mg of protein per liter of culture medium and specificity for D-mannose, α-methyl-mannoside and melibiose, unlike the wild-type protein. rDSL presented an effective vasorelaxant effect in rat aortas up to 100% and also interacted with glioma cells C6 and U87. Our results demonstrated an efficient recombinant production of rDSL in a bacterial system that retained some biochemical properties of the wild-type protein, showing wider versatility in sugar specificities and better efficacy in its activity in the biological models evaluated in this work. V.Alzheimer's disease is the most common form of neurodegenerative disease and the formation of Aβ amyloid aggregates has been widely demonstrated to be the principal cause of Alzheimer's disease. Our previous study and other studies suggested that the gallate moiety played an obligatory role in the inhibition process of naturally occurring polyphenols on Aβ amyloid fibrils formation. However, the detailed mechanisms were still unknown. Thus, in the present study, the gallic acid (GA) was specially selected and the molecular recogn