https://www.selleckchem.com/products/GDC-0941.html Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.Photodynamic therapy is a medical technique, which is gaining increasing attention to treat various types of cancer. Among the investigated classes of photosensitizers (PSs), the use of Ru(II) polypyridine complexes is gaining momentum. However, the currently investigated compounds generally show poor cancer cell selectivity. As a consequence, high drug doses are needed, which can cause side effects. To overcome this limitation, there is a need for the development of a suitable drug delivery system to increase the amount of PS delivered to the tumor. Herein, we report the encapsulation of a promising Ru(II) polypyridyl complex into polymeric nanoparticles with terminal biotin groups. Thanks to this design, the particles showed much higher selectivity for cancer cells in comparison to noncancerous cells in a 2D monolayer and 3D multicellular tumor spheroid model. As a highlight, upon intravenous injection of an identical amount of the Ru(II) polypyridine complex of the nanoparticle formulation, an improved accumulation inside an adenocarcinomic human alveolar basal epithelial tumor of a mouse up to a factor of 8.7 compared to the Ru complex itself was determined. The nanoparticles were found to have a high phototoxic effect