Further in vitro and in vivo studies consistently confirmed that the nanodrugs exhibited preferable accumulation at the tumor sites with highly synergistic chemotherapeutic effects. The supramolecular recognition-inspired, cascade-triggered self-targeting and controlled release of nanodrugs could be a promising strategy to improve synergistic chemotherapy.Developing drug delivery platforms that can modulate a tumor microenvironment and deliver multiple therapeutics to targeted tumors is critical for efficient cancer treatment. Achieving these platforms still remains a great challenge. Herein, biodegradable nanocapsules based on MnFe hydroxides (H-MnFe(OH)x) have been developed as a new type of cargo delivery with high loading capacity and catalytic activity, enabling synergetic therapy with promoted efficacy by relieving hypoxia in tumor tissues. As a proof of concept, a photosensitizer (indocyanine green, ICG) and a chemotherapeutic drug (doxorubicin, DOX) are co-loaded in nanocapsules and selectively released upon degradation of the nanocapsules in the acidic tumor microenvironment, and are promoted by near infrared irradiation. Meanwhile, Mn2+/Fe3+ ions released from the degradation of nanocapsules catalyze the conversion of H2O2 in a tumor microenvironment into oxygen, which modulates tumor hypoxia and dramatically boosts multimodal therapies. Remarkable synergistic anticancer outcomes have been demonstrated both in vitro and in vivo, paving the way towards future multifunctional therapeutic platforms.Despite the crystallization of inorganic salt is being technologically related to the fabrication of salt-templated materials, the two key steps, nucleation and crystal growth, still lack the kinetic control to enable precise design of salt scaffolds. Here, we study how the undercooling degree controls the construction of salt scaffolds by kinetically manipulating the nucleation and growth rates in a NaCl-F127-rhodanine system. An effective approach based on undercooling-directed NaCl crystallization is further proposed to tailor the morphology and structure of the carbon materials. Under different undercooling conditions (liquid nitrogen, -55 °C and -25 °C freezing), the salt scaffold can be tuned as spheroidal particles, ellipsoidal nanocrystal aggregates and cubic nanocrystals with round corners, respectively. Correspondingly, hollow carbon nanospheres, nanocavity-linked graphene networks (CGN) and graphene nanosheets (GNS) can be fabricated through a salt template method, respectively. The Li+ and Na+ storage mechanisms of 3D CGN and 2D GNS are discussed, focusing on the ion diffusion kinetics. The enhanced Li+ diffusion kinetics in the 3D interconnected network endows CGN with better rate performance than GNS as lithium-ion battery anode material, and Na+ adsorption dominates the Na+ storage in CGN as sodium-ion battery anode material. Our findings provide a general idea for the construction crystallization-induced architectures and offer valuable insights to achieve fast Li+/Na+ storage by boosting the ion diffusion kinetics.Bi-metallic patterns with array of Pt discs decorated by Au rings were fabricated onto the substrate by a templated-self-assembly procedure in which multi-step self-assembly processes were involved. The original pattern was established by using the breath figure method. The bi-metallic sample with Au rings exhibited rather high sensitivity as well as great reproducibility within the array in surface-enhanced Raman scattering test.Isostructural mixed alkali/alkaline-earth metal tellurite halides BaLiTe2O5X (X = Cl, Br) have been successfully synthesized by a mild hydrothermal method, which possess the [Te2O5]∞ chains formed by the corner-sharing connections of the TeO3 and TeO4 polyhedra. The [Te2O5]∞ chains are bridged via the LiO3 polyhedra to form the [LiTe2O5]∞ layers with 4- and 6-membered rings. The adjacent [LiTe2O5]∞ layers are linked via the BaO9 polyhedra to form the [BaLiTe2O5]∞ double layers, which are further connected via weak Ba-X-Li interactions to generate a 3D framework. Analysis of different lithium tellurites shows that the different arrangements of the Te-O and Li-O units in the lithium tellurites can be attributed to the cation-cation repulsion and lone-pair effect. Both compounds display good thermal stability, wide optical bandgaps (4.25 and 4.13 eV), and large birefringence. First-principles calculations indicate that the TeOn groups and X- determine the optical properties of BaLiTe2O5X (X = Cl, Br).Heterogeneous ternary Pt-Ni-Au nanowires (NWs) with randomly distributed Pt-Ni and Pt-Au micro phases were successfully synthesized following an oriented attachment mechanism. The as-prepared NWs exhibit enhanced activity and durability in both a rotating disk electrode (RDE) and single-cell, originating from the one dimensional (1D) heterogeneous structure.Chenopodium quinoa Willd. is an ancient food crop that has provided nutrition to Andean populations for thousands of years. BRS Piabiru is a quinoa genotype developed and adapted to tropical climate by the Brazilian Agricultural Research Corporation. https://www.selleckchem.com/products/2-nbdg.html In this work, BRS Piabiru quinoa was evaluated concerning its nutritional, physicochemical and phenolic composition and also its bioactive properties. This variety showed high carbohydrate and protein contents and a low-fat level, composed of 86% of unsaturated fatty acids, 60% of which are polyunsaturated fatty acids. Four organic acids were detected, with quinic acid as the most abundant, while α- and γ-tocopherols were the vitamin E isoforms found. Quercetin and kaempferol glycosides were the main phenolic compounds in the quinoa extract, which also revealed relevant antioxidant and antimicrobial activities, with no toxic effect. These results support the potential of BRS Piabiru quinoa as a nutritious food crop and a source of bioactive compounds.In this study imidazolium and imidazolinium centers in precursor [2]rotaxanes were deprotonated to obtain interlocked molecules featuring stabilized N-heterocyclic carbene centers. The encircling macrocyclic components enhanced the persistence of the otherwise unstable imidazolidin-2-ylidenes in solution at 253 K for more than a week in the absence of air.