While egocentric room-scale exploration significantly reduced mental workload, exocentric exploration improved performance in some tasks. Combining navigation and manipulation made tasks easier by reducing workload, temporal demand, and physical effort.This article introduces progressive algorithms for the topological analysis of scalar data. Our approach is based on a hierarchical representation of the input data and the fast identification of topologically invariant vertices, which are vertices that have no impact on the topological description of the data and for which we show that no computation is required as they are introduced in the hierarchy. This enables the definition of efficient coarse-to-fine topological algorithms, which leverage fast update mechanisms for ordinary vertices and avoid computation for the topologically invariant ones. We demonstrate our approach with two examples of topological algorithms (critical point extraction and persistence diagram computation), which generate interpretable outputs upon interruption requests and which progressively refine them otherwise. Experiments on real-life datasets illustrate that our progressive strategy, in addition to the continuous visual feedback it provides, even improves run time performance with regard to non-progressive algorithms and we describe further accelerations with shared-memory parallelism. We illustrate the utility of our approach in batch-mode and interactive setups, where it respectively enables the control of the execution time of complete topological pipelines as well as previews of the topological features found in a dataset, with progressive updates delivered within interactive times.This article proposes an end-to-end learnt lossy image compression approach, which is built on top of the deep nerual network (DNN)-based variational auto-encoder (VAE) structure with Non-Local Attention optimization and Improved Context modeling (NLAIC). Our NLAIC 1) embeds non-local network operations as non-linear transforms in both main and hyper coders for deriving respective latent features and hyperpriors by exploiting both local and global correlations, 2) applies attention mechanism to generate implicit masks that are used to weigh the features for adaptive bit allocation, and 3) implements the improved conditional entropy modeling of latent features using joint 3D convolutional neural network (CNN)-based autoregressive contexts and hyperpriors. Towards the practical application, additional enhancements are also introduced to speed up the computational processing (e.g., parallel 3D CNN-based context prediction), decrease the memory consumption (e.g., sparse non-local processing) and reduce the implementation complexity (e.g., a unified model for variable rates without re-training). The proposed model outperforms existing learnt and conventional (e.g., BPG, JPEG2000, JPEG) image compression methods, on both Kodak and Tecnick datasets with the state-of-the-art compression efficiency, for both PSNR and MS-SSIM quality measurements. We have made all materials publicly accessible at https//njuvision.github.io/NIC for reproducible research.Delay-and-sum (DAS) beamformers, when applied to photoacoustic (PA) image reconstruction, produce strong sidelobes due to the absence of transmit focusing. Consequently, DAS PA images are often severely degraded by strong off-axis clutter. For preclinical in vivo cardiac PA imaging, the presence of these noise artifacts hampers the detectability and interpretation of PA signals from the myocardial wall, crucial for studying blood-dominated cardiac pathological information and to complement functional information derived from ultrasound imaging. In this article, we present PA subaperture processing (PSAP), an adaptive beamforming method, to mitigate these image degrading effects. In PSAP, a pair of DAS reconstructed images is formed by splitting the received channel data into two complementary nonoverlapping subapertures. Then, a weighting matrix is derived by analyzing the correlation between subaperture beamformed images and multiplied with the full-aperture DAS PA image to reduce sidelobes and incoherent clutter. https://www.selleckchem.com/products/mptp-hydrochloride.html We validated PSAP using numerical simulation studies using point target, diffuse inclusion and microvasculature imaging, and in vivo feasibility studies on five healthy murine models. Qualitative and quantitative analysis demonstrate improvements in PAI image quality with PSAP compared to DAS and coherence factor weighted DAS (DAS CF ). PSAP demonstrated improved target detectability with a higher generalized contrast-to-noise (gCNR) ratio in vasculature simulations where PSAP produces 19.61% and 19.53% higher gCNRs than DAS and DAS CF , respectively. Furthermore, PSAP provided higher image contrast quantified using contrast ratio (CR) (e.g., PSAP produces 89.26% and 11.90% higher CR than DAS and DAS CF in vasculature simulations) and improved clutter suppression.Many known supervised deep learning methods for medical image segmentation suffer an expensive burden of data annotation for model training. Recently, few-shot segmentation methods were proposed to alleviate this burden, but such methods often showed poor adaptability to the target tasks. By prudently introducing interactive learning into the few-shot learning strategy, we develop a novel few-shot segmentation approach called Interactive Few-shot Learning (IFSL), which not only addresses the annotation burden of medical image segmentation models but also tackles the common issues of the known few-shot segmentation methods. First, we design a new few-shot segmentation structure, called Medical Prior-based Few-shot Learning Network (MPrNet), which uses only a few annotated samples (e.g., 10 samples) as support images to guide the segmentation of query images without any pre-training. Then, we propose an Interactive Learning-based Test Time Optimization Algorithm (IL-TTOA) to strengthen our MPrNet on the fly for the target task in an interactive fashion. To our best knowledge, our IFSL approach is the first to allow few-shot segmentation models to be optimized and strengthened on the target tasks in an interactive and controllable manner. Experiments on four few-shot segmentation tasks show that our IFSL approach outperforms the state-of-the-art methods by more than 20% in the DSC metric. Specifically, the interactive optimization algorithm (IL-TTOA) further contributes ~10% DSC improvement for the few-shot segmentation models.