https://www.selleckchem.com/ Bacillus thuringiensis (Bt) is efficient, strongly specific, and avirulent to humans, making it one of the most popular biopesticides in the world. Bt LLP29 is a mosquitocidal strain that was first isolated from Magnolia denudata. To understand its molecular mechanism against mosquitoes, the genome of Bt LLP29 was sequenced and annotated in this study. The LLP29 genome was found to have a total length of 5.99 Mb, with an average G + C content of 35.21%. A total of 6107 coding sequences were also detected, together with 42 rRNAs and 124 tRNAs and 135 other RNAs. With the help of annotation databases, including GO, COG, KEGG, Nr and Swiss-Prot, most unigene functions were identified. At the same time, a collinear analysis was performed on the genome of LLP29. There were also some virulence genes detected, including cry, chitinase, zwittermicin and vip.Responses to sunlight exposure of the oil-degrading Dietzia cinnamea P4 strain were evaluated by transcriptional levels of SOS genes, photoreactivation and genes involved in tolerance to high levels of reactive oxygen species. The P4 strain was exposed for 1 and 2 h and the magnitude of level changes in the mRNA was evaluated by qPCR. The results described the activation of the SOS system, with the decline of the repressor lexA gene levels and the concomitant increase of recA and uvrAD genes levels. The genes that participate in the photoreactivation process were also responsive to sunlight. The phrB gene encoding deoxyribodipyrimidine photo-lyase had its expression increased after 1-h exposure, while the phytAB genes showed a progressive increase over the studied period. The protective genes against reactive oxygen species, catalases, superoxides, peroxidases, and thioredoxins, had their expression rates detected under the conditions validated in this study. These results show a fast and coordinated response of genes from different DNA repair and tolerance mechanisms employed by strain P4, s