https://www.selleckchem.com/products/s63845.html 7%. We then used CRISPRi technology combined with 26 sgRNAs pool to rapidly discover a new phytoene desaturase gene META1_3670 from 2470 recombinant mutants. The gene function was further verified through gene deletion and complementation as well as phylogenetic tree analysis. In addition, we applied CRISPRi to repress the transcriptional level of squalene-hopene cyclase gene shc involved in hopanoid biosynthesis by 64.9%, which resulted in enhancing 1.9-fold higher of carotenoid production without defective cell growth. Thus, the CRISPRi system developed here provides a useful tool in mining functional gene of M. extorquens as well as in biotechnology for producing high-valued chemicals from methanol. KEY POINTS Developing an efficient CRISPRi to knockdown gene expression in C1-utilizing bacteria CRISPRi combined with sgRNAs pool to rapidly discover a new phytoene desaturase gene Improvement of carotenoid production by repressing a competitive pathway.Leishmaniosis is caused by the protozoa of the genus Leishmania with a wide spectrum of clinical and epidemiological manifestations which are characterized into four clinical groups cutaneous, mucocutaneous, diffuse cutaneous, and visceral. American visceral leishmaniosis (AVL) or visceral leishmaniosis (VL) has been known as the most severe form of the disease. However, despite the growing number of people exposed to the infection risk and the great effort done by the scientific community worldwide to significantly increase the knowledge about these diseases, there is no vaccine capable of preventing VL in humans. In this short review, we present some of the plasmids used for the expression of recombinant protein by Escherichia coli strains used mainly for the second generation of vaccines for leishmaniosis. It can be emphasized that currently, these vectors and hosts play an important role in developing vaccine strategies against the disease. Indeed, use of the E. col