These compound antigens are the result of an interaction between ABO, H, SE, and LE genes.The Kidd-null phenotype, Jk(a-b-), is rare, and a patient with this phenotype may develop anti-Jk3, a red blood cell (RBC) antibody reactive with a domain common to both Jka and Jkb. Like other antibodies to high-prevalence antigens, the presence of this antibody poses challenges in the immunohematologic evaluation of these patients. Thoughtful laboratory testing is necessary to resolve the antibody specificity and to reveal other underlying antibodies. Moreover, the rarity of the Kidd-null phenotype makes finding blood donors difficult for those who need transfusion and have developed anti-Jk3. This review describes methods used in identifying anti-Jk3 in four pregnant patients. Blood bank records were retrospectively reviewed to illustrate the common approach in anti-Jk3 identification. In all cases, pertinent blood bank history was gathered, and extended RBC phenotyping was performed, followed by adsorption studies and testing of selected RBCs. Underlying antibodies were found in two of the cases. This revk history was gathered, and extended RBC phenotyping was performed, followed by adsorption studies and testing of selected RBCs. Underlying antibodies were found in two of the cases. This review also reiterates some common challenges encountered with Kidd antibody analysis and highlights the importance of patient ethnic ancestry and obtaining accurate patient transfusion history.Platelets are small but very abundant blood cells that play a key role in hemostasis, contributing to thrombus formation at sites of injury. The ability of platelets to perform this function, as well as functions in immunity and inflammation, is dependent on the presence of cell surface glycoproteins and changes in their quantity and conformation after platelet stimulation. In this article, we describe the characterization of platelet surface markers and platelet function using platelet-specific fluorescent probes and flow cytometry. Unlike traditional platelet tests, immunophenotypic analysis of platelets by flow cytometry allows the analysis of platelet function in samples with very low platelet counts as often encountered in clinical situations. © 2021 Wiley Periodicals LLC. Basic Protocol 1 Immunophenotyping of platelet surface receptors Alternate Protocol Fix-first method for immunophenotyping of platelet surface receptors Basic Protocol 2 Determination of platelet activation using P-selectin expression and/or PAC1 binding Basic Protocol 3 Determination of procoagulant platelets using annexin V binding or antibodies specific for coagulation factor V/Va or X/Xa Support Protocol Preparation of isolated platelets.Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. https://www.selleckchem.com/products/Rapamycin.html Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC. The enlarged vestibular aqueduct (EVA) is the commonest malformation of inner ear accompanied by sensorineural hearing loss in children. Three genes SLC26A4, FOXI1, and KCNJ10 have been associated with EVA, among them SLC26A4 being the most common. Yet, hotspot mutation screening can only diagnose a small number of patients. Thus, in this study, we designed a new molecular diagnosis panel for EVA based on multiplex PCR enrichment and next-generation sequencing of the exon and flanking regions of SLC26A4. A total of 112 hearing loss families with EVA were enrolled and the pathogenicity of the rare variants detected was interpreted according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Our results showed that 107/112 (95.54%) families carried SLC26A4 biallelic mutations, 4/112 (3.57%) carried monoallelic variants, and 1/112 (0.89%) had none variant, resulting in a diagnostic rate of 95.54%. A total of 49 different variants were detected in those patients and we classified 30 rare variants as pathogenic/likely pathogenic, of which 13 were not included in the Clinvar database.