https://www.selleckchem.com/products/1400w.html Semiconductor microcavities can greatly enhance the light-emitting of embedded quantum dots (QDs). Here, a new route toward the microcavity-QD system by fabricating microcavities followed by growing ordered QDs on patterned microresonator is proposed, which keeps QDs from being etched. Self-assembled Ge QDs prefer to form at the rims of Si microrings or microdisks. The Ge QDs on the pit- or groove-patterned microring resonator (MRR) show better size uniformity and position accuracy. These features are explained by the evolutions of surface morphology and surface chemical potential distribution. Sharp photoluminescence peaks in the telecommunication band with the quality factors in the range of 450-850 from groove-patterned MRR are observed at 295 K due to efficient overlap between Ge QDs and resonant modes. Our schemes shed light on the exactly site-controlled growth of QDs on micro- and nano-structures, which further facilitates the investigation of light-matter interactions.The temperature-dependent transversely isotropic elastic properties of multi-walled boron nitride nanotubes (MWBNNTs) were determined using molecular dynamics simulations with a three-body Tersoff potential force field. These elastic properties were calculated by applying the four different loading conditions on MWBNNTs uniaxial tension, torsional moment, in-plane biaxial tension and in-plane shear. The effect of chirality, number of layers and aspect ratio (AR) were taken into consideration. The results reveal that the elastic constants of MWBNNTs decrease as their number of layers increase. The elastic moduli of MWBNNTs do not depend on the AR but are function of chirality. Furthermore, the effect of temperature on the transversely isotropic elastic constants of MWBNNTs was studied. The higher temperature considerably affects the mechanical properties of MWBNNTs. For instance, the reduction in the values of axial Young's, longitudinal shear, pla