https://www.selleckchem.com/products/sj6986.html This method can be applied to other organic molecules and larger wide bandgap semiconductors, and therefore, will expand the versatility for the photochemical reactions utilizing the short-lived excited states.Chemoselective copper-catalyzed synthesis of diverse N-arylindole-3-carboxamides, β-oxo amides and N-arylindole-3-carbonitriles from readily accessible indole-3-carbonitriles, α-cyano ketones and diaryliodonium salts has been developed. Diverse N-arylindole-3-carboxamides and β-oxo amides were successfully achieved in high yields under copper-catalyzed neutral reaction conditions, and the addition of an organic base (DIPEA) resulted in a completely different selectivity pattern to produce N-arylindole-3-carbonitriles. Moreover, the importance of the developed methodology was realized by the synthesis of indoloquinolones and N-((1H-indol-3-yl)methyl)aniline and by a single-step gram-scale synthesis of the naturally occurring cephalandole A analogue.Prostate-specific membrane antigen (PSMA) is highly expressed on the surface of most prostate tumor cells and is considered a promising target for prostate cancer imaging and treatment. It is possible to establish a PSMA-targeted theranostic probe to achieve early diagnosis and treatment of this cancer type. In this contribution, we prepared a multifunctional melanin-like polydopamine (PDA) nanocarrier decorated with a small-molecule PSMA inhibitor, N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-l-lysine (DCL). PDA-DCL was then functionalized with perfluoropentane (PFP) and loaded with the photosensitizer chlorin e6 (Ce6) to give Ce6@PDA-DCL-PFP, which was successfully used for ultrasound-guided combined photodynamic/photothermal therapy (PDT/PTT) of prostate cancer. Compared with the corresponding non-targeted probe (Ce6@PDA-PEG-PFP), our targeted probe induced higher cellular uptake in vitro (6.5-fold) and more tumor accumulation in vivo (4.6-fold), suggesting strong a