https://www.selleckchem.com/products/n6022.html The single-photon scattering by a V-type three-level emitter in a rectangular waveguide is studied. Here the frequency value of input photons can be large beyond the single-transverse-mode region. By using Green's function formalism, the necessary and sufficient conditions of complete transmission as well as complete reflection are derived analytically. In the region of single transverse mode, the physical mechanisms of complete transmission and complete reflection are electromagnetically induced transparency (EIT) and Fano resonance, respectively. In the region of multiple transverse modes, which are induced by the finite cross section, the quantum interference between multiple scattering pathways with different transverse modes can be used to manipulate the single-photon transport. We find that the emitter becomes transparent when the superposition of waveguide modes has zero amplitude at the position of emitter. And the perfect reflection is absent even under Fano resonance unless the input-state is in a coherent superposition state. These results may promote the development of single-photon devices with wide applicable frequency region.In this article we present and describe an online freely accessible software called Multi-Scattering for the modeling of light propagation in scattering and absorbing media. Part II of this article series focuses on the validation of the model by rigorously comparing the simulated results with experimental data. The model is based on the use of the Monte Carlo method, where billions of photon packets are being tracked through simulated cubic volumes. Simulations are accelerated by the use of general-purpose computing on graphics processing units, reducing the computation time by a factor up to 200x in comparison with a single central processing unit thread. By using four graphic cards on a single computer, the simulation speed increases by a factor of 800x. For an anisotropy factor g