https://www.selleckchem.com/products/z-yvad-fmk.html These two datasets yielded a sedimentation rate of 3.3 cm/yr for Core A and of 9.6 cm/yr for Core B, the latter evidenced by an increase of ~ 0.51 m in the bed level from 2008 to 2014. Combining the 210Pb dating method, we further estimated the sedimentation rate for the layers beneath the original ground, which was comparable to that of the bare flats in the Jiangsu coast. Even though this new method is only applicable to newly-formed saltmarshes, it helps identify the recent sedimentation events as well as reveal the environmental changes and the evolution of saltmarsh-bare flat systems due to the interplay between vegetation, hydrodynamics and sediment dynamics. It thus could be an efficient and cost-effective tool for an improved understanding of the response of coastal wetlands to a changing climate/environment.Anaerobic digestion (AD) is a green technology widely applied to food waste treatment. Although the AD has high efficiency, instability often occurs. The main purpose of the study is to understand the mechanism of modified biochar improving AD performance. The effects of different modified biochar on the efficiency and microecology of an anaerobic reactor treating food waste were investigated. Bagasse biochar was used as the substrate to explore the effects of iron-modified (A), chitosan-modified (B), iron-chitosan-modified (C) and iron‑magnesium-chitosan-modified (D) biochar on the anaerobic digestion process, sludge characteristics and microbial community. The results show that the average COD removal efficiency of the four reactors during the last five days of the experimentation period was 86.95%, 85.90%, 92.22% and 93.29%, respectively. Adding iron‑magnesium-chitosan-modified biochar could improve the efficiency of COD removal in the anaerobic reactor under ammonia nitrogen stress. On day 10 of operation, the content of coenzyme F420 in the sludge of anaerobic reactors C and D reached to 0.44 and