https://www.selleckchem.com/products/ly333531.html Here, we propose an amplification strategy involving enzyme-mimicking accelerated signal enhancement integrated with a triple-channel volumetric bar-chart chip for visually multiplexed quantitation of telomerase activity. This platform was used for evaluating the telomerase activities from different kinds of cells and a detection limit at the single-cell level was realized without any instrumental assistance.A direct enantioselective N1 aminoalkylation of 3-substituted indoles is efficiently catalyzed by a phosphoric acid catalyst under mild conditions to afford diverse enantioenriched propargyl aminals. The strategy could be applied to the modification of tryptophan containing oligopeptides. Additionally, structurally diverse and multifunctional transformations of the propargyl aminal products reveal the potential synthetic utility of this protocol.Herein we first report a dual-responsive peptide substrate (Comp. 1) for preparing self-assembled nanomaterials triggered by pH and legumain. The dual-responsive self-assembly of Comp. 1 in glioma cells enables its long retention time in lysosomes, S phase arrest, and cell growth locking. We verified that the blocked degradation of HIF-1α in lysosomes played a key role in cell cycle arrest and decreased DNA replication. This work illustrates the disturbance of lysosomal function by self-assembled nanomaterials as a promising strategy for inhibiting glioma cell growth.Near-Infrared emissions are highly important in biological and telecommunications technology. For the first time, NIR-to-NIR emission was achieved in a water-soluble molecular cluster-aggregate. The erbium analogue of the highly tunable [Ln6(teaH)6(NO3)6] complex emits at 1530 nm with direct excitation at 980 nm, and can be boosted by replacing three erbium ions with three ytterbium(iii), in the molecular structure. The presented methodology is a unique approach to probe the effect of composition control and