https://www.selleckchem.com/products/cinchocaine.html Proteins created from recurrent fusion genes like CBFB-MYH11 are prevalent in acute myeloid leukemia (AML), often necessary for leukemogenesis, persistent throughout the disease course, and highly leukemia specific, making them attractive neoantigen targets for immunotherapy. A nonameric peptide derived from a prevalent CBFB-MYH11 fusion protein was found to be immunogenic in HLA-B*4001+ donors. High-avidity CD8+ T cell clones isolated from healthy donors killed CBFB-MYH11+ HLA-B*4001+ AML cell lines and primary human AML samples in vitro. CBFB-MYH11-specific T cells also controlled CBFB-MYH11+ HLA-B*4001+ AML in vivo in a patient-derived murine xenograft model. High-avidity CBFB-MYH11 epitope-specific T cell receptors (TCRs) transduced into CD8+ T cells conferred antileukemic activity in vitro. Our data indicate that the CBFB-MYH11 fusion neoantigen is naturally presented on AML blasts and enables T cell recognition and killing of AML. We provide proof of principle for immunologically targeting AML-initiating fusions and demonstrate that targeting neoantigens has clinical relevance even in low-mutational frequency cancers like fusion-driven AML. This work also represents a first critical step toward the development of TCR T cell immunotherapy targeting fusion gene-driven AML.The tight junction protein claudin-2 is upregulated in inflammatory bowel disease, and yet its deficit worsens infectious and chemical colitis. In this issue of the JCI, Raju and Shashikanth et al. examined the contribution of claudin-2 to immune-mediated colitis. The authors used transgenic mouse models to show that claudin-2 deficiency attenuated colitis progression as well as a leak barrier defect, albeit at the risk of intestinal obstruction. Further, inhibition of claudin-2 by targeting casein kinase 2 (CK2) also ameliorated colitis. The findings reveal unsuspected links between the pore and leak pathways of intestinal permeability and