Serum cortisol concentration was higher in calves supplemented with 6% of HCSP at weaning and at the end of the study. This indicates that these calves may have experienced a stressful condition compared with calves in other treatments. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Total antioxidant capacity was quadratically affected by HCSP supplementation; calves fed 2 and 4% of HCSP diets had the highest total antioxidant capacity, whereas calves fed 0 and 6% HCSP diets had lower total antioxidant capacity at weaning and at end of the study. Calves supplemented with 6% HCSP had lower empty reticulo-rumen and omasum weights and rumen wall thickness compared with calves in other treatments at the end of the study. In conclusion, supplementation of HCSP at the rate of 2% of starter diet enhanced antioxidant status without any detrimental effects on the performance and metabolic status of calves, whereas greater inclusion rates impaired starter intake and growth of calves, and exposed them to a stressful status. In this study, we investigated the effect of goat milk casein hydrolysates on glucose consumption rate, intracellular glycogen concentration, and mRNA expression of gluconeogenesis-related genes, including phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase catalytic subunit (G6PC), in insulin-resistant HepG2 cells. From the obtained hydrolysates, we also purified and characterized novel peptides that ameliorated high-glucose-induced insulin resistance in HepG2 cells. The 3-h hydrolysate caused the highest glucose consumption rate in insulin-resistant HepG2 cells. It also showed positive effects on promoting intracellular glycogenesis and reducing mRNA expression of PCK1 and G6PC. We separated the obtained hydrolysates into 3 fractions (F1, F2, and F3) by gel filtration chromatography; we further purified F1 using reversed-phase HPLC and identified peptides using liquid chromatography-tandem mass spectrometry. The bioactive peptides identified were SDIPNPIGSE (αS1-casein, f195-204), NPWDQVKR (αS2-casein, f123-130), SLSSSEESITH (β-casein, f30-40), and QEPVLGPVRGPFP (β-casein, f207-219). Our findings indicated that specific bioactive peptides from goat milk casein hydrolysates ameliorated insulin resistance in HepG2 cells that had been treated with high glucose. This is a first step toward determining whether goat milk casein hydrolysates can be used as food ingredients to ameliorate insulin resistance. Traditionally, breeding programs have estimated and managed inbreeding based on pedigree information. The availability of genomic marker panels has made possible new alternatives to achieve more precise estimates, for example in case of missing pedigree. The objective of the present study was to assess and compare, different estimation methods (pedigree-based methodologies, single SNP-based approach (homozygosity) and runs of homozygosity-based method) to analyze the evolution of genetic diversity measured as inbreeding or as coancestry of 3 selected populations of Latxa dairy sheep (Latxa Cara Rubia and Latxa Cara Negra from Euskadi and Navarre). Genomic data came from 972 artificial insemination rams genotyped with the Illumina OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) whose genealogy consisted of 4,484 animals. Inbreeding estimates based on molecular data were more similar between them than compared with those based on pedigree information. However, the SNP-based approach estimations of effective ch Tête Rousse was more noticeable between than within each of those breeds. © 2020, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http//creativecommons.org/licenses/by-nc-nd/4.0/).Infections of the mammary gland in dairy cows are commonly accompanied by reduced milk production and feed intake and poor milk quality. The metabolic status of early-lactating cows is known to affect immune response to pathogens and imposed immune challenges. We investigated the extent to which metabolic status before an intramammary lipopolysaccharide (LPS) challenge (LPS-CH) is associated with immune response, milk production, and feed intake and the recovery thereof. In 15 Holstein cows, weekly blood sampling and daily recording of dry matter intake, milk yield, milk composition, and body weight (to calculate energy balance) was started immediately after parturition. In wk 4 after parturition, cows underwent an intramammary LPS-CH (50 μg of LPS into 1 quarter). Blood and milk samples were taken in parallel at 30- and 60-min intervals, respectively, until 10 h after the LPS application. Plasma concentrations of glucose, nonesterified fatty acids, β-hydroxybutyrate (BHB), cortisol, and insulin were analyzedday of the LPS-CH but recovered to prechallenge values faster in HG. Milk yield recovered within 2 d after the LPS-CH with no differences in morning milkings, whereas evening milk yield increased faster in HG. During 8 d after LPS-CH, SCC, LDH, IgG, and serum albumin in milk were lower in HG compared with LG. In conclusion, the level of circulating glucose and BHB concentrations in cows was associated with metabolic responses during an LPS-CH as well as the recovery of udder health and performance thereafter. Producers in the western United States commonly use spray water at the feed bunk and fans in the lying area to mitigate heat stress in dairy cows. Often, spray water cycles on and off with fans turning on when a preset air temperature is reached. Although this method can be effective, innovative strategies are needed to reduce water and energy use. We evaluated the effectiveness and resource efficiency of 4 cooling treatments on behavioral and physiological responses in dairy cows housed in a freestall barn (1) conductive cooling in which mats with recirculating evaporatively cooled water were buried under sand bedding (Mat; activated at 18.9°C); (2) targeted convective cooling in which evaporatively cooled air was directed toward the cows through fabric ducts with nozzles at both the feed bunk and lying areas (Targeted Air; activated at 22°C); (3) evaporative cooling, with spray water in the feed area and fan over the freestalls (Baseline; activated at 22°C); and (4) evaporative cooling with half the amount of spray water used in the Baseline and the fan moved to the feed bunk (Optimized Baseline; activated at 22°C).