pH, Eh and EC played more important roles, as compared to soil-borne heavy metals, in affecting the soil carbon dynamics in the contaminated Mersey estuarine floodplain. V.During the last decade, treatment (artificial) wetlands have flourished all over Europe for the treatment of sewages from small communities thanks to their low cost of operation. The clogging of the filter of these wetlands is an issue affecting their efficiency and considered as their main operational problem. The present work shows the results of the application of a geophysical method called time-domain induced polarization. It is used to non-intrusively image, in 3D, the clogging of the gravel filters in a quick and efficient way. Induced polarization characterizes the ability of a porous material to reversibly store electrical charges when submitted to an electrical field. The material property characterizing this ability is called normalized chargeability. A set of laboratory experiments allows to determine an empirical relationship between the normalized chargeability and the weight amount of clogging. Induced polarization measurements have been performed in the field over a treatment wetland to get a 3D reconstructed image (tomography) of the normalized chargeability. From this tomography and the previously defined relationship, we are able to image in 3D the distribution of clogging and where it is concentrated in the filter. We can therefore identify the areas requiring preventive measures to minimize this clogging issue. We systematically investigated the sorption and fixation behaviors of radiocesium (137Cs) for sediments taken from the rivers of Ukedo and Odaka around the Fukushima Daiichi Nuclear Power Plant. By comparing the Cs sorption and sequential desorption results at various Cs concentrations, across a range of sediment properties, we were able to understand the different contributions at frayed edge sites (FESs) and regular exchange sites (RESs) of the clay minerals, and their relationships with the Cs concentrations and the contents of organic matter (OM). The Cs sorption and fixation were dominated by FESs at trace Cs concentrations, and by ion exchange at RES and the collapse of interlayers at higher Cs concentrations. The Cs sorption at lower Cs concentration was strongly related to radiocesium interception potential (RIP); however, Cs fixation was more related to clay mineralogy (i.e. contents of mica, vermiculite and hydroxy-interlayered vermiculite) rather than the RIP. The first-order kinetic constants for time-dependent Cs sorption at low Cs concentrations were correlated negatively to the ratio between the total organic carbon and RIP values. https://www.selleckchem.com/products/ziritaxestat.html This implies that Cs access to FESs requires a relatively long duration that is dependent on the contents of the OM. From these results, the sorption and fixation mechanisms were confirmed to be significantly different at different Cs concentrations. Then, the prediction of Cs transport should be based on the key mechanisms that are dominant at the actual trace levels of Cs. A significant difference between the Cs fixation behaviors at the Ukedo River and Odaka River may be understood by considering the differences in their clay mineralogy, due to the different geological settings and weathering stages of both catchments. According to ISO 14046 the quantification of the water scarcity footprint (WSFP) of hydropower reservoirs has to consider (1) the evaporation of water from the surface of the reservoir, (2) the baseline evaporation of water of the same area before the reservoir has been built, and (3) the water scarcity index of the location of the reservoir on a spatially and temporally explicit level. When a reservoir has a storing function, e.g., for irrigation in the dry season, monthly water scarcity indexes have to be used in order to calculate the WSFP, since storage in wet seasons and release in dry seasons can counteract water scarcity and lead to a reduction of overall water scarcity in the watershed. This paper builds on previous research regarding detailed hydropower modeling and extends the water scarcity assessment to include and advance new methods for identifying sensitivities in monthly WSFP of hydropower due to the choice of impact assessment methods. We applied the global analysis to 1473 hydropower plants covering >100 countries, and added a detailed assessment for a subset of important power plants to discuss the limitations of global assessments. We thereby provide the most complete WSFP of global hydropower with state-of-the-art methods, assess the robustness of the global model and different methodological choices, and provide new monthly average AWARE CFs on watershed level. The results show that water scarcity can often be mitigated if the net evaporation is compensated by the storage effects. The two water scarcity metrics applied lead to larger differences than expected, since the monthly dynamics of dams can lead to stronger differences than the differences in the applied water scarcity factors. The new insights help to better understand the WSFP of hydropower and its uncertainties. In 2010, the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology whilst maintaining food production capacity. A central component of the DTC platform was the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution (30 min) empirical datasets of surface water, groundwater and meteorological parameters over a long period (2011-2018). Utilising 8.9 million water quality measurements generated for the River Wensum, this paper demonstrates how long-term, high-resolution monitoring of hydrochemistry can improve our understanding of the complex temporal dynamics of riverine processes from 30 min to annual timescales. This paper explores the impact of groundwater-surface water interactions on instream pollutant concentrations (principally nitrogen, phosphorus and turbidity) and reveals how varying hydrochemical associations under contrasting flow regimes can elicit important information on the dominant pollution pathways.