eening HPA genotypes in a large sample cohort simultaneously. It is easily upgradeable for genotyping additional targets without changing the setup or the analysis pipeline. Mass-screening methods will help building up blood donor registries to provide matched blood products. Copyright © 2020 by S. Karger AG, Basel.Background In the novel era of blood group genomics, (re-)defining reference gene/allele sequences of blood group genes has become an important goal to achieve, both for diagnostic and research purposes. As novel potent sequencing technologies are available, we thought to investigate the variability encountered in the three most common alleles of ACKR1, the gene encoding the clinically relevant Duffy antigens, at the haplotype level by a long-read sequencing approach. Materials and Methods After long-range PCR amplification spanning the whole ACKR1 gene locus (∼2.5 kilobases), amplicons generated from 81 samples with known genotypes were sequenced in a single read by using the Pacific Biosciences (PacBio) single molecule, real-time (SMRT) sequencing technology. Results High-quality sequencing reads were obtained for the 162 alleles (accuracy >0.999). Twenty-two nucleotide variations reported in databases were identified, defining 19 haplotypes four, eight, and seven haplotypes in 46 ACKR1*01, 63 ACKR1*02, and 53 ACKR1*02N.01 alleles, respectively. Discussion Overall, we have defined a subset of reference alleles by third-generation (long-read) sequencing. This technology, which provides a "longitudinal" overview of the loci of interest (several thousand base pairs) and is complementary to the second-generation (short-read) next-generation sequencing technology, is of critical interest for resolving novel, rare, and null alleles. Copyright © 2019 by S. Karger AG, Basel.Hemolytic disease of the fetus and newborn and fetal and neonatal alloimmune thrombocytopenia are caused by maternal antibodies against fetal alloantigens on red blood cells or platelets that are inherited from the father. After transplacental transport to the fetal circulation, antibodies of the IgG class may cause severe fetal anemia or bleeding complications. The indication for noninvasive fetal blood group genotyping is given if a clinically relevant antibody is detected in a pregnant woman and if the father is heterozygous (or unknown) for the implicated blood group allele. This mini-review will focus on the advantages and current limitations of next-generation sequencing (NGS) for noninvasive diagnosis of fetal blood groups which is, in contrast to fetal aneuploidy screening, proposed only by some research groups. Targeted massively parallel sequencing of short DNA fragments from maternal cell-free plasma samples enables counting of fetal alleles for many single nucleotide polymorphisms in parallel. This information can be utilized for estimation of the fetal fraction of cell-free DNA (cfDNA) as well as detection of the paternal blood group allele in question. Adherence to a cut-off of ≥4% fetal fraction for reporting conclusive results is recommended to avoid false-negative results due to low fetal fraction. For screening purposes of fetal RHD in RhD-negative pregnant women, real-time PCR methods are very well established. However, for diagnostic purposes, the targeted amplicon-based NGS approach has the inherent capability to estimate the fetal fraction of cfDNA. In the future, improving the accuracy of NGS by consensus sequencing of single cfDNA molecules may enable reliable fetal blood group genotyping already in the first trimester of pregnancy. Copyright © 2020 by S. Karger AG, Basel.Sequencing of the human genome has led to the definition of the genes for most of the relevant blood group systems, and the polymorphisms responsible for most of the clinically relevant blood group antigens are characterized. Molecular blood group typing is used in situations where erythrocytes are not available or where serological testing was inconclusive or not possible due to the lack of antisera. Also, molecular testing may be more cost-effective in certain situations. Molecular typing approaches are mostly based on either PCR with specific primers, DNA hybridization, or DNA sequencing. Particularly the transition of sequencing techniques from Sanger-based sequencing to next-generation sequencing (NGS) technologies has led to exciting new possibilities in blood group genotyping. We describe briefly the currently available NGS platforms and their specifications, depict the genetic background of blood group polymorphisms, and discuss applications for NGS approaches in immunohematology. As an example, we delineate a protocol for large-scale donor blood group screening established and in use at our institution. Furthermore, we discuss technical challenges and limitations as well as the prospect for future developments, including long-read sequencing technologies. Copyright © 2019 by S. Karger AG, Basel.in English, Arabic أهداف البحث تحديد القيم الطبيعية لقوة قبضة اليد لدى أطفال في سن ما قبل المدرسة، ومعرفة علاقتها بالقياسات الجسمانية. https://www.selleckchem.com/products/cbr-470-1.html طرق البحث ضمت الدراسة أطفال ما قبل المدرسة، الذين تتراوح أعمارهم بين ٣-٦ سنوات، من كلا الجنسين. تم تقسيم الأطفال إلى ثلاث فئات عمرية، ٣-٤، ٤-٥ و٥-٦ سنوات. وتم استخدام مقياس القوة المنتفخ لقياس قبضة اليد، واستخدام شريط القياس لتقييم المقاييس الجسمانية. النتائج تم إدراج ٦٣٦ طفلا عاديا في سن ما قبل المدرسة في هذه الدراسة. وكانت قوة قبضة اليد المهيمنة ٢٦.٨٧±٦.٧٧ كيلو باسكال و٢٩.٧٨± ٨.٤٣ كيلو باسكال و٣٨.٠٤± ٨.٥٥ كيلو باسكال للمجموعات الأولى والثانية والثالثة، على التوالي. بينما كانت قوة القبضة المحسوبة في اليد غير المهيمنة ٢٥.٠٣± ٧.١٩ كيلو باسكال، ٢٨.١٣± ٨.٤٣ كيلو باسكال و٣٣.٧٤ ± ٨.١٤ كيلو باسكال، على التوالي. في المجموعة الأولى، كان هناك ارتباط ضئيل بين قوة القبضة ومحيط الساعد ومحيط اليد. في المقابل، وجدنا علاقة إيجابية بدون دلالة إحصائية مع طول اليد في اليد المهيمنة. في اليد غير المهيمنة، كانت العلاقة سالبة مع محيط الساعد، وموجبة لكن بدون دلالة إحصائية مع محيط اليد، وإيجابية مع طول اليد.