https://www.selleckchem.com/products/chir-99021-ct99021-hcl.html 7,8-DHF treatment significantly reduced HFD and EtOH-induced oxidative stress as evidenced by the reduction of lipid peroxidation and augmentation of reduced glutathione level. Moreover, IL-1β level was found significantly reduced in 7,8-DHF treated EtOH, HFD and EtOH+HFD groups. The semi-quantitative RT-PCR results indicated down-regulation of Nrf-2 and HO-1 and up-regulation of NF-KB and iNOS mRNA expression level in the liver of HFD and EtOH-fed rats, which was ameliorated by 7,8-DHF treatment. CONCLUSION The present study suggested that 7,8-DHF could be an effective pharmacological intervention in combating HFD and EtOH-induced hepatotoxicity.BACKGROUND Coumarin and 3,4-dihydroquinolinone nuclei are two heterocyclic rings that are important and widely exploited for the development of bioactive molecules. Here, we designed and synthesized a series of 3,4-dihydroquinolinone and coumarin derivatives (Compounds 8,9,11,14,15,18-20, 23, 24 and 28 are new compounds) and studied their antidepressant activities. METHODS Forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant activity of the target compounds. The most active compound was used to evaluate the exploratory activity of the animals by the open-field test. 5-HT concentration was estimated to evaluate if the compound has an effect on the mouse brain, by using ELISA. A 5-HT1A binding assay was also performed. The biological activities of the compounds were verified by molecular docking studies. The physicochemical and pharmacokinetic properties of the target compounds were predicted by Discovery Studio and ChemBioDraw Ultra. RESULTS Of all the compounds tested, compound 7 showed the best antidepressant activity, which decreased the immobility time by 65.52 s in FST. However, in the open-field test, compound 7 did not affect spontaneous activity. The results of 5-HT concentration estimation in vivo showed th