Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.Artichoke (Cynara scolymus) leaf extract (ALE) contains many phytonutrients that may have antioxidant and anti-inflammation activities against many diseases including liver damage. To investigate the protective effects of ALE on high-fat and high-cholesterol (HFHC) diet-induced steatohepatitis and liver damage in mice, twenty-four female mice were fed an HFHC diet without or with 0.5% and 1% ALE supplementation for 6 weeks. The antioxidant and anti-inflammation activities and histological changes in the liver after ALE treatment were evaluated. The results show that ALE treatment reduced the HFHC diet-induced elevation of liver damage, as indicated by an increased alanine aminotransferase activity in plasma and perivenular inflammatory infiltrates in the liver. In addition, ALE ameliorated HFHC diet-induced depletion of hepatic glutathione (GSH) and elevations of plasma total cholesterol, triglyceride and hepatic triglyceride. ALE suppressed HFHC diet-induced accumulation of cholesterol precursors, including squalene and desmosterol in the liver. Higher hepatic GSH contents and activities of GSH-related enzymes were observed after ALE treatment. Higher expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (HO-1) were induced by the HFHC diet; however, ALE treatment reduced HO-1 expression. The NOD-like receptor protein 3, caspase-1, and interleukin-1β protein and mRNA levels were reduced in the liver by ALE. A higher multidrug resistance-associated protein 2 expression in the liver was found after ALE treatment. These results suggest that ALE may ameliorate oxidative stress, inflammation and lipid metabolism disorder in HFHC diet-induced steatohepatitis and liver damage.An azide and transition metal-free method for the synthesis of elusive phosphonic, phosphinic, and phosphoric monoacids has been developed. Inert pentavalent P(v)-compounds (phosphonate, phosphinate, and phosphate) are activated by triflate anhydride (Tf2O)/pyridine system to form a highly reactive phosphoryl pyridinium intermediate that undergoes nucleophilic substitution with H2O to selectively deprotect one alkoxy group and form organophosphorus monoacids.mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. https://www.selleckchem.com/products/tak-243-mln243.html Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.The new phase Na2VO(HPO4)2 was synthesized by sodium/proton ion exchange between NaI and VO(H2PO4)2 in hexanol. The exchange of two protons by two sodium ions causes a structural reorganization leading to a new original phase. The crystal structure was solved by continuous 3D Electron Diffraction, consisting of recording a video in diffraction mode during the continuous sample holder rotation in order to acquire a complete dataset in a shortest time in order to avoid the deterioration of this electron beam sensitive material. The individual Electron Diffraction patterns were extracted from the video, processed by conventional electron diffraction crystallography programs (PETS, JANA2006) and the resulting structural model calculated by the charge flipping algorithm was refined from powder X-ray diffraction data. This material crystallizes in an orthorhombic unit cell in the Iba2 (45) space group, with the cell parameters a = 13.86852(19), b = 13.7985(2), c = 7.47677(9). Electrochemical studies show that up to 0.66 Na f.u.-1 could be removed from Na2VO(HPO4)2.Correction for 'Polymerase-mediated synthesis of p-vinylaniline-coupled fluorescent DNA for the sensing of nucleolin protein-c-myc G-quadruplex interactions' by Guralamatta Siddappa Ravi Kumara et al., Org. Biomol. Chem., 2021, DOI 10.1039/D1OB00863C.Tumor targeting with nanoparticles is a promising strategy for cancer diagnosis and treatment, especially for drug delivery to solid tumors. Previous studies mainly focused on nanoparticle design to improve their targeting efficiency, but few have investigated the impact of tumor progression stages on the targeting efficiency. Here, we used PEGylated viral nanoparticles (VNPs) of bacteriophage P22 to explore the relationship between targeting efficiency and tumor progression stages using a colorectal cancer model. We found an 8.1-fold increase in the accumulation of P22 VNPs systematically injected 7 days after tumor inoculation compared with those injected 21 days after tumor inoculation. Most tumor-targeted P22 VNPs were concentrated in tumor-associated macrophages in the tumor blood vessels, the density of which decreased with the progression of tumors. These results reveal that the tumor targeting efficiency of P22 VNPs decreased with tumor progression. These findings provide valuable information for not only the understanding of controversial observations regarding targeted cancer therapy in experimental and clinical studies but also the design of nanoparticle-based tumor targeting probes or therapeutics.