Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes wmportance of alternative splicing regulation for tumor growth and propagation. Classification of splicing variants (SVs) in genes associated with hereditary cancer is often challenging. The aim of this study was to investigate the occurrence of SVs in hereditary cancer genes and the clinical utility of RNA analysis. 1518 individuals were tested for cancer predisposition, using a Next Generation Sequencing (NGS) panel of 36 genes. Splicing variant analysis was performed using RT-PCR and Sanger Sequencing. In total, 34 different SVs were identified, 53% of which were classified as pathogenic or likely pathogenic. The remaining 16 variants were initially classified as Variant of Uncertain Significance (VUS). RNA analysis was performed for 3 novel variants. The RNA analysis assisted in the reclassification of 20% of splicing variants from VUS to pathogenic. RNA analysis is essential in the case of uncharacterized splicing variants, for proper classification and personalized management of these patients. The RNA analysis assisted in the reclassification of 20% of splicing variants from VUS to pathogenic. RNA analysis is essential in the case of uncharacterized splicing variants, for proper classification and personalized management of these patients. The E6 genotypic variants of HPV 16 identified in lesions of women with cervical cancer (CC) in Southern of Mexico include the E-G350, AAa, AAc, E-C188/G350, and E-A176/G350, transcriptomic analysis cells transfected with those variants showed to induce differential expression of the host genes involved in the development of CC, the aim of this work was to understand how the over-expression of the E6 oncoprotein and its variants can induce molecular mechanisms that lead to more aggressive HPV 16 phenotypes in cervical cancer and which proteins could be associated with the process. Total extracts from C33A, C33A mock, C33A AAa, C33A E-C188/G350, C33A E-A176/G350, and C33A E-prototype cells were analyzed using 2D electrophoresis, PDQuest software and mass spectrometry, validation of results was performed through qPCR. Statistically significant differential expression of 122 spots was detected, 12 of the identified proteins were associated with metabolism and metabolic programming. Out of these CCT8, ENO and ALDH1A were further validated. CCT8 and ALDH1A were found to be over-expressed in C33A AAa and C33A E-A176/G350, compared to the E prototype. Both proteins could be associated with a most aggressive phenotype due to their relationship with metabolism, protein folding and stemness, mechanisms associated to E6 that could be useful in the design of new therapies. CCT8 and ALDH1A were found to be over-expressed in C33A AAa and C33A E-A176/G350, compared to the E prototype. Both proteins could be associated with a most aggressive phenotype due to their relationship with metabolism, protein folding and stemness, mechanisms associated to E6 that could be useful in the design of new therapies. c-Met (mesenchymal-epithelial transition factor) facilitates cancer progression and is recognized as a promising drug target. The molecular target of gigantol from Dendrobium draconis in suppressing cancer metastasis is largely unknown. Proteins affected by gigantol treatment were subjected to proteomic and bioinformatic analysis. Protein-Protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database and hub gene were used to enrich the dominant pathways. Western blot analysis and immunofluorescence were used to validate the effect of gigantol on the target protein and signaling. Gigantol down-regulates 41 adhesion proteins and 39-migratory proteins, while it up-regulates 30 adhesion-related proteins and 22 proteins controlling cell migration. The key components of our constructed PPI network comprised 41 proteins of cell adhesion enriched in 40 nodes with 25 edges, 39 proteins of cell mi cells. Gigantol suppresses metastasis-related cell motility through decreasing c-Met resulting in PI3K/AKT signaling disruption. To identify novel diagnostic markers for renal cell carcinoma (RCC), we analyzed miRNAs in serum extracellular vesicles (EVs). EVs were purified from serum of healthy controls and patients with localized and advanced RCC using T-cell immunoglobulin domain and mucin domain-containing protein 4 conjugated to magnetic beads. miRNA profiling of EVs was conducted by microarray analysis. miRNA expression was examined by quantitative reverse transcription-polymerase chain reaction. https://www.selleckchem.com/products/VX-770.html Lastly, proteomic analysis of RCC cells transfected with a miRNA inhibitor was performed to identify its potential targets. Microarray analysis revealed that nine miRNAs were increased by more than 1.5-fold in EVs from patients with RCC. Among them, miRNA-4525 was significantly elevated; miRNA-4525 expression was higher in RCC tissue than in the adjacent normal tissue. Proteomic analysis identified alpha fetoprotein and albumin as its potential targets. These findings suggest the potential of miRNA-4525 in serum EVs as a novel biomarker for advanced RCC.