https://www.selleckchem.com/products/abr-238901.html We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages 1) utilizing knowledge of biological systems to better inform eco-evolutionary models, 2) generating models with more accurate predictions, and 3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere. The association of plasma high-density lipoprotein (HDL) cholesterol with risk of dementia is unclear. We therefore tested the hypothesis that high levels of plasma HDL cholesterol are associated with increased risk of dementia and whether a potential association is of a causal nature. In two prospective population-based studies, the Copenhagen General Population Study and the Copenhagen City Heart Study (Nā€‰=ā€‰111,984 individuals), we first tested whether high plasma HDL cholesterol is associated with increased risk of any dementia and its subtypes. These analyses in men and women separately were adjusted multifactorially for other risk factors including apolipoprotein E (APOE) genotype. Second, taking advantage of two-sample Mendelian randomization, we tested whether genetically elevated HDL cholesterol was causally associated with Alzheimer's disease using publicly available consortia data on 643,836 individuals. Observationally, multifactorially adjusted Cox regression restricted cubic spline models sho support that this association is of a caus