https://www.selleckchem.com/products/r-hts-3.html A direct one-pot copper-catalyzed oxidative C-C bond cleavage route to the synthesis of pyridoquinazolinones is described. This one-pot strategy involves a copper-catalyzed C-N coupling followed by concomitant C(sp3)-H oxidation and amidation via oxidative C-C bond cleavage under an O2 atmosphere to deliver the target molecules in high yields.In this work, we propose the XO-PBC method, which combines the eXtended ONIOM method (XO) with the periodic boundary condition (PBC) for the description of molecular crystals. XO-PBC tries to embed a finite cluster cut out from the solid into the periodic environment, making it feasible to employ advanced molecular quantum chemistry methods, which are usually prohibitively expensive for direct PBC calculations. In particular, XO-PBC utilizes the results from force calculations to design the scheme to fragment the molecule when crystals are made of large molecules and to select cluster model systems automatically consisting of dimer up to tetramer interactions for embedding. By applying an appropriate theory to each model, a satisfactory accuracy for the system under study is ensured, while a high efficiency is achieved with massively parallel computing by distributing model systems onto different processors. A comparison of the XO-PBC calculations with the conventional direct PBC calculations at the B3LYP level demonstrates its accuracy at substantially low cost for the description of molecular crystals. The usefulness of the XO-PBC method is further exemplified, showing that XO-PBC is able to predict the lattice energies of various types of molecular crystals within chemical accuracy ( less then 4 kJ/mol) when the doubly hybrid density functional XYG3 is used as the target high level and the periodic PBE as the basic low level. The XO-PBC method provides a general protocol that brings the great predictive power of advanced electronic structure methods from molecular systems to