Here, we present a patient with risk factors for psychotic illness developing psychotic illness following extensive nitrous oxide use. This report offers a unique perspective of longitudinal follow-up (often not provided with reports on this topic), and illustrates the importance of healthcare providers inquiring about nitrous oxide abuse in patients presenting with early psychotic symptoms. (Am J Addict 2020;0000-00). © 2020 American Academy of Addiction Psychiatry.Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist (https//osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community-informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https//github.com/jsheunis/quality-and-denoising-in-rtfmri-nf. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.Nitrate ( NO 3 - ) supplementation is an effective methane (CH4 ) mitigation strategy for ruminants but may produce nitrite ( NO 2 - ) toxicity. It has been reported that rumen protozoa have greater ability for NO 3 - and NO 2 - reduction than bacteria. It was hypothesised that the absence of ruminal protozoa in sheep may lead to higher NO 2 - accumulation in the rumen and a higher blood methaemoglobin (MetHb) concentration. An in vivo experiment was conducted with defaunated (DEF) and faunated (FAU) sheep supplemented with 1.8% NO 3 - in DM. The effects of rumen protozoa on concentrations of plasma and ruminal NO 3 - and NO 2 - , blood MetHb, ruminal volatile fatty acid (VFA) and ruminal ammonia (NH3 ) were investigated. Subsequently, two in vitro experiments were conducted to determine the contribution of protozoa to NO 3 - and NO 2 - reduction rates in DEF and FAU whole rumen digesta (WRD) and its liquid (LIQ) and solid (SOL) fractions, incubated alone (CON), with the addition of NO 3 - or with the addition of NO 2 - . The results from the in vivo experiment showed no differences in total VFA concentrations, although ruminal NH3 was greater (p  less then  .01) in FAU sheep. Ruminal NO 3 - , NO 2 - and plasma NO 2 - concentrations tended to increase (p  less then  .10) 1.5 hr after feeding in FAU relative to DEF sheep. In vitro results showed that NO 3 - reduction to NH3 was stimulated (p  less then  .01) by incoming NO 3 - in both DEF and FAU relative to CON digesta. However, adding NO 3 - increased (p  less then  .05) the rate of NO 2 - accumulation in the SOL fraction of DEF relative to both fractions of FAU digesta. Results observed in vivo and in vitro suggest that NO 3 - and NO 2 - are more rapidly metabolised in the presence of rumen protozoa. Defaunated sheep may have an increased risk of NO 2 - poisoning due to NO 2 - accumulation in the rumen. https://www.selleckchem.com/products/dbet6.html © 2020 Blackwell Verlag GmbH.The efficacy of methane (CH4 ) suppression using medium-chain fatty acids (MCFA) remains inconclusive, despite a number of studies on this topic are available. We thus carried out a meta-analysis to integrate the published data on different concentrations and types of MCFA such as lauric acid and myristic acid, which investigated ruminal methanogenesis and fermentation in in vitro and in vivo experiments. In vitro MCFA sources were classified either as pure MCFA (lauric acid, myristic acid and their combinations) or as natural MCFA-rich oils (canola oil enriched with lauric acids, coconut oil, krabok oil and palm kernel oil). The MCFA sources used in the in vivo studies were coconut oil, lauric acid, myristic acid and the combination of lauric and myristic acids. A total of 41 studies (20 in vitro and 21 in vivo studies) were compiled in our database, which included the data on CH4 emission, digestibility, ruminal fermentation products and microbial populations. The results showed that the amount of CH4 production per unit of digested organic matter decreased linearly under in vitro conditions (p  krabok oil. It can be concluded that the effect of MCFA on ruminal methanogenesis depends on the amount and type of MCFA. © 2020 Blackwell Verlag GmbH.Carotenoids are one of the widespread and ubiquitous lipid-soluble pigments that produce a wide range of colours which are universally found in various plants, microalgae, bacteria and fungi. Recently, interest in using carotenoids as feed ingredients has increased markedly owing to their bioactive and health-promoting properties. In terms of applications, carotenoid-rich products are widely available in the form of food and feed additive, supplements and natural colourants. Carotenoids play a versatile biological role that contributes to therapeutic effects, including anticancer, immunomodulators, anti-inflammatory, antibacterial, antidiabetic and neuroprotective. Dietary supplementation of carotenoids not only improves the production performance and health of poultry birds, but also enhances the quality of egg and meat. Several studies have suggested that the supplementation of plant derived carotenoids revealed numerous health-promoting activities in poultry birds. Carotenoids reduce the oxidative stress in pre-hatched and post-hatched birds through different mechanisms, including quench free radicals, activating antioxidant enzymes and inhibiting the signalling pathways.