https://www.selleckchem.com/products/tj-m2010-5.html Moreover, we identified many CONSTANS-LIKE, FLOWERING LOCUS T, and other DEGs involved in the direct regulation of flowering including CDF and TCP, which function as typical transcription factor genes in the flowering process. At the transcriptomic level, we verified 13 DEGs with different functions in the time-course response to light-induced flowering by quantitative reverse-transcription PCR analysis. CONCLUSIONS The identified DEGs may include some key genes controlling the pitaya floral-induction network, the flower induction and development is very complicated, and it involves photoperiod perception and different phytohormone signaling. These findings will increase our understanding to the molecular mechanism of floral regulation of long-day pitaya plants in short-day winter season induced by supplementary lighting.BACKGROUND Ornithine aminotransferase (OAT, EC2.6.1.13), alternatively known as ornithine delta aminotransferase (δOAT), is a pyridoxal phosphate (PLP)-dependent enzyme involved in the conversion of ornithine into glutamyl-5-semi-aldehyde (GSA) and vice versa. Up till now, there has been no study on OAT in wheat despite the success of its isolation from rice, maize, and sorghum. This study focuses on identification and molecular characterization of OAT in wheat. RESULTS In total, three homeologous OAT genes in wheat genome were found on chromosome group 5, named as TaOAT-5AL, TaOAT-5BL, and TaOAT-5DL. Sequence alignment between gDNA and its corresponding cDNA obtained a total of ten exons and nine introns. A phylogenetic tree was constructed and results indicated that OATs shared highly conserved domains between monocots and eudicots, which was further illustrated by using WebLogo to generate a sequence logo. Further subcellular localization analysis indicated that they functioned in mitochondria. Protein-promes and arginine catabolism. In addition, TaOAT genes had a role in abiotic stress toleran