https://www.selleckchem.com/products/ly333531.html The aim of current investigation was to demonstrate the effectiveness of Degussa P-25 titania in the photocatalytic treatment of sewage, discharged from industrial estate, as a combined process under solar irradiation. The study was aimed to understand the role of fundamental factors including, titania load, initial COD level, and pH on the photocatalytic degradation rate. The commercially produced TiO2 represented a mesoporous structure, 2-30 nm, indicating the adequate activity in the COD reduction of sewages collected from the streams entreating anaerobic, aerobic, and sand filtration stages when 0.5 g L-1 of photocatalyst was loaded. According to the obtained results, the degradation rate is accelerated with an increase in the initial COD level. Although the solar treatment of streams entering to the anaerobic, and aerobic stages indicated the higher rates, the separation of titania particles from the sludge is very difficult. Therefore, it seems that the downstream of recovery network is still the best position to assemble the photocatalytic system, as an auxiliary process to reduce COD below the standard level, and improve the recovery rate. The maximal removal efficiency, 87%, was achieved within 20 min by the solar treatment of sewage in the alkali condition with the control of pH around 8.Heat stress (HS) in dairy cows can be classified into short-term heat stress (STHS) and long-term heat stress (LTHS) according to the number of consecutive days in HS. The comparative study of these 2 types of HS is limited in terms of their effects on the production and energy metabolism of cows. In this study, 4 lactating Holstein cows (102.5 ± 12 days in milk, 605 ± 22 kg of body weight, second parity) fitted with rumen fistulae were randomly assigned to 1 of 2 groups in a 2 × 2 crossover design and allocated to 1 of 2 climate-controlled chambers. This study contained 2 periods, each with a control phase and a HS phase.