Due to the relevance to excited-state processes, sensing mechanisms of fluorescent probes were difficult to study directly by experimental methods. This work investigated theoretically the sensing mechanism of a reported bifunctional fluorescent probe to detect intracellular hydroxyl radicals and their environmental viscosity (J. Am. Chem. Soc. 2019, 141, 18301). https://www.selleckchem.com/products/fl118.html Calculations were performed at the B3P86/TZVP/SMD level using density functional theory and time-dependent density functional theory. The transition from the ground-state (S0) to the first singlet excited state (S1) was calculated to have the largest oscillation strength for the probe. The wavelength that corresponded to the S0-S1 vertical excitation energy (427 nm) agreed well with the maximum absorption band at 400 nm in the ultraviolet-visible spectra. Theoretical results showed that the probe had two distinct geometries in the S0 and S1 states, respectively. This difference was caused by the different distributions of frontier molecular orbitals that were involved in the S0-S1 transition and corresponds to a twisted intramolecular charge transfer. The S1-state potential energy curve of the probe molecule confirmed that the twisted intramolecular charge transfer could proceed spontaneously with a potential barrier of only 12.20 kJ/mol. This result provided an irradiative approach for the probe molecule to dissipate the S1-state energy, which explained its fluorescence quenching. In contrast, the hydroxyl oxidation reaction changed frontier molecular orbitals of the probe molecule, which made its S1 state a local S1 state with a strong fluorescence emission. Precisely due to the mechanism, the hydroxyl radicals could be detected by changes in the fluorescence signal of the probe molecule.Accurately monitoring and effectively controlling the tritium compounds based on their ro-vibrational energy structure are important issues in various nuclear systems. Because of their radioactivity, it is difficult to obtain the corresponding energies directly through experiments. In this paper, the potential energy curves and the corresponding ro-vibrational full spectrum of DT, HT and T2 systems are derived by ab initio methods. However, it is difficult to verify the reliability of the calculated results due to the lack of direct experimental support. Therefore, a data-driven reliability analysis method is proposed, which can confirm the reliability by extracting information from the relevant calculations and multiple experimental data (the vibrational level, rotational level, and molar heat capacity) of similar systems (HD, H2, D2). The results show that 1) The potential energy curves obtained by the ab initio method can provide the full ro-vibrational energy spectrum with an accuracy of approximately 10 cm-1; 2) Macroscopic heat capacity information can be used to distinguish and calibrate the overall reliability of microscopic ro-vibrational energies; 3) For the isotopic energy level structure of hydrogen, the influence of isotopes is mainly mass effect.Tetracyclines (TC) are a common antibiotic for using in livestock breeding and healthcare; however, due to the inappropriate application of TCs, more than 75% of TCs are excreted and released into the environment in an active form through human and animal urine and feces, which results in high levels of TCs in the ecological system, causing adverse effects on the food safety and human health. Thus, the high-performance monitoring of TC pollution is necessary. In this work, a highly sensitive fluorescent aptasensor was developed that was based on graphene oxide (GO) regulation of low background signal and target-induced fluorescence restoration. In the absence of analyte, the DNA probe (TC aptamer) was adsorbed completely by GO and failed to enhance the fluorescence of SYBR gold (SG), thereby resulting in a low background signal. When the TC-included samples were added, the DNA probe formed an aptamer-TC complex, thereby separating from the surface of the GO and inducing the fluorescence of SG. Under optimal conditions, the proposed strategy could detect TC concentrations of less than 6.2 × 10-3 ng mL-1, which is four orders of magnitude better than the detection limit of the "turn off" mode (53.9511 ng mL-1). Moreover, this aptasensor has been used to detect TC from milk samples and wastewater samples, and its satisfactory performances demonstrate that the proposed strategy can be applied in practice for TC monitor in food safety and environmental protection. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment.The assay of detecting DNA methyltransferase activity has been identified as one of the central challenges in cancer diagnostics as DNA methylation is closely related to the diagnosis and treatment of tumors. In this study, a label-free fluorescence probe based on poly-thymine copper nanoclusters engineered by terminal deoxynucleotidyl transferase is proposed for methyltransferase activity assay. Taking advantage of the efficient polymerization extension reaction catalyzed by terminal deoxynucleotidyl transferase and the copper nanoclusters with large Stokes shift instead of labeling fluorescent dyes, the strategy exhibits a broader linear scope from 1 to 300 U mL-1 with a detection limit of 0.176 U mL-1. The economical method is specificity for M.SssI and also provides a convenient and high-throughput platform for screening the DNA methylation inhibitors, which displays a great potential for the practical applications of the drug development and clinical cancer diagnosis in the future.Synthesis, spectral properties, and photodynamic activity of water-soluble amino acid fullerene C60 derivatives (AFD) and four original AFD-PPa dyads, obtained by covalent addition of dye pyropheophorbide (PPa) to AFD, were studied. In aqueous solution, these AFD-PPa dyads form nanoassociates as a result of self-assembly. In this case, a significant change in the absorption spectra and strong quenching of the dye fluorescence in the structure of the dyads were observed. A comparison of superoxide or singlet oxygen generation efficiency of the studied compounds in an aqueous solution showed the photodynamic mechanism switching from type II (singlet oxygen generation of the native dye) to I type (superoxide generation of dyads). All dyads have pronounced phototoxicity on cells Hela with IC50 9.2 µM, 9.2 µM, 12.2 µM for dyads Val-C60-PPa, Ala-C60-PPa and Pro-C60-PPa, respectively. Such facilitation of type I photodynamic mechanism could be perspective against hypoxic tumors.