Therefore, we concluded that computational findings based on network pharmacology reveal the pharmacological targets, biological processes, and molecular mechanisms of formononetin against liver injury before some of findings were partially certified in vivo. Overall, formononetin may be a potential active component to prevent or treat liver injury. Many long non-coding RNAs (lncRNAs) have been suggested to play critical roles in the pathogenesis of ischemic stroke, including lncRNA rhabdomyosarcoma 2-associated transcript (RMST). We aimed to elucidate the role and molecular mechanism of RMST in ischemic stroke. The in vitro ischemic stroke model was established by treating brain microvascular endothelial cells with oxygen-glucose deprivation (OGD). The expression of RMST, miR-204-5p and vascular cell adhesion molecule 1 (VCAM1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). https://www.selleckchem.com/products/sulfopin.html The interaction between miR-204-5p and RMST or VCAM1 was confirmed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell viability, migration and apoptosis were assessed by Cell Counting Kit-8 (CCK-8), wound healing assay and flow cytometry, respectively. Lactic dehydrogenase (LDH) leakage rate was determined by LDH activity assay kit. The protein level of VCAM1 was analyzed by western blot (WB) assay. RMST was upregulated in OGD-treated HBMEC and bEnd.3 cells. MiR-204-5p was a direct target of RMST, and miR-204-5p inhibition abated the inhibitory effect of RMST knockdown on OGD-induced injury via inhibiting cell viability and migration and promoting apoptosis in HBMEC and bEnd.3 cells. Moreover, VCAM1 was identified as a direct target of miR-204-5p, and VCAM1 alleviated the effect of miR-204-5p on reduction of OGD-induced injury in HBMEC and bEnd.3 cells. In addition, RMST regulated VCAM1 expression via sponging miR-204-5p. RMST knockdown attenuated OGD-induced injury of HBMEC and bEnd.3 cells via regulating miR-204-5p/VCAM1 axis, indicating a possible therapeutic strategy for future ischemic stroke therapy. RMST knockdown attenuated OGD-induced injury of HBMEC and bEnd.3 cells via regulating miR-204-5p/VCAM1 axis, indicating a possible therapeutic strategy for future ischemic stroke therapy.Although the central role of Nurr-1/GDNF has been reviewed amply, scarce data are available on their peripheral impact. Carvedilol and morin hydrate have previously conferred their hepatic anti-fibrotic action. Thus, our aim was to unveil the potential hepatoprotective role of carvedilol (CR) and/or morin hydrate (MH) using a hepatic 70% partial warm ischemia/reperfusion (I/R) rat model. Rats were allocated into sham-operated, hepatic I/R, and I/R preceded by oral administration of CR (10 and 30mg/kg; CR /CR ), MH (30mg/kg), or CR +MH for one week. On the molecular level, pretreatment with CR and/or MH increased the hepatic contents of Nurr-1, GDNF, and the protein expression of active/p-AKT. On the other hand, they inactivated GSK3β and NF-κB to increase the antioxidant enzymes (GPx, SOD, CAT). All regimens also enhanced the autophagy/lysosomal function and boosted the protein expression of beclin-1, LC3II, and TFEB. Moreover, their antiapoptotic effect was signified by increasing the anti-apoptotic molecule Bcl2 and inhibiting Bax, Bax/Bcl2 ratio, and caspase-3, effects that were confirmed by the TUNEL assay. These improvements were reflected on liver function, as they decreased serum aminotransferases and liver structural alterations induced by I/R. Despite its mild impact, CR showed marked improvements when combined with MH; this synergistic interaction overrides the effect of either regimen alone. In conclusion, CR, MH, and especially the combination regimen, conferred hepatoprotection against I/R via activating the Nurr-1/GDNF/AKT trajectory to induce autophagy/lysosomal biogenesis, inhibit GSK3β/NF-кB hub and apoptosis, and amend redox balance. In conclusion, CR, MH, and especially the combination regimen, conferred hepatoprotection against I/R via activating the Nurr-1/GDNF/AKT trajectory to induce autophagy/lysosomal biogenesis, inhibit GSK3β/NF-кB hub and apoptosis, and amend redox balance. The minichromosome maintenance (MCM) complex is highly conserved, which has drawn increasing attention on physiology and pathology process. However, the role of MCM in hepatocellular carcinoma (HCC) remains largely unclear. We aimed to conduct systematic analysis of expression patterns, prognostic values and potential functions of nine MCM genes in HCC, thus identifying their role in HCC. In our study, we systemically analyzed the role of MCM in prognosis and HCC progression by several bioinformatics analysis tools. Immunohistochemical (IHC) assays were utilized to valid the protein expression of MCM in HCC and in vitro experiments were used to confirm the functions of MCMs in HCC proliferation. Overexpression of MCM2-8 and MCM10 were found to be significantly associated with clinical parameters and poor prognosis of HCC patients. The function of MCM was mainly enriched in DNA replication. Moreover, MCM were also associated with several cancer pathway and drug sensitivity in HCC. Close correlations were observed between immune cell infiltration and MCM in HCC. Cell Counting Kit-8 (CCK-8) and clone formation assays suggested the role of MCM2-8 and MCM10 in HCC proliferation. These results have implied that deregulated MCM played an important role in HCC progression and might be considered as potential therapeutic and prognostic targets for HCC. These results have implied that deregulated MCM played an important role in HCC progression and might be considered as potential therapeutic and prognostic targets for HCC. The purpose of this study was to reveal the therapeutic efficacy and underlying mechanism of cannabinoid type 2 receptor agonist (AM1241) on myocardial ischemia-reperfusion injury (MIRI) in rats. We established a rat myocardial ischemia/reperfusion (I/R) model and H9c2 hypoxia/reoxygenation (H/R) model. ELISA was used to determine the concentrations of cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in plasma. EB/TTC staining was performed to observe the myocardial infarct size. Besides, the pathological changes of myocardial tissue were identified via H&E staining and Masson's trichrome staining. TUNEL assay was performed to examine myocardial apoptosis. Then, the protein expression of Pink1, Parkin and autophagy-related markers (Beclin-1, P62 and LC3) were detected by Western blot, and autophagy was evaluated by Mitotracker staining. The results of EB/TTC staining, H&E staining, Masson's trichrome staining and cardiac enzymes measuring showed that AM1241 treatment significantly diminished infarct size, the structural abnormalities and the activities of cardiac enzymes (cTnI, CK-MB, AST and LDH).