https://www.selleckchem.com/products/tas-120.html Water pollution from the fashion industries containing dyes has become a major source of water pollution. These anthropogenic contaminated waters directly enter irrigation and drinking water systems, causing irreversible environmental damage to human health. Nanomembrane technology has attracted extensive attention to remove these toxic chemicals but new approaches are still required for improving removal efficiency and control the channel size. The work deals with the fabrication of a novel hybrid polyvinylidene fluoride (PVDF)-polyaniline (PANI) membrane with graphene oxide (GO). Incorporation of PANI-GO as a nanofiller has significantly improved antifouling properties and a solvent content of the fabricated membrane. Besides, pure water flux also increases from 112 to 454 L m-2 h-1 indicating the hydrophilic nature of the nanocomposite membrane. Among various compositions, the nanocomposites membrane with 0.1 %w/v GO demonstrated a maximum of 98 % dye rejection at 0.1 MPa operating pressure. After multiple testing of the membrane, the flux recovery ratio reached about 94 % and dyes rejection improved with the addition of PANI-GO. The removal efficiency of the composite membrane for Allura red is 98 % and for methyl orange is 95 %. Based on the above results the PVDF/PANI/GO membranes are recommended for practical use in wastewater treatment, particularly for anionic dyes removal from textile effluents.Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.