Then, the surgical procedure is simulated and a finite element analysis of the endarterectomized and patched carotid artery is employed. Stress fields are calculated, while deformation at the site of patch angioplasty indicates a potential cause for the formation of aneurismal degeneration after the surgery. Such analysis can provide a better understanding in the establishment of follow-up protocols.Centrosomes are the major microtubule organizing center of animal cells. Centrosomes contribute to timely bipolar spindle assembly during mitosis and participate in the regulation of other processes such as polarity establishment and cell migration. Centrosome numbers are tightly controlled during the cell cycle to ensure that mitosis is initiated with only two centrosomes. Deviations in centrosome number or structure are known to impact cell or tissue homeostasis and can impact different processes as diverse as proliferation, death or disease. Interestingly, defects in centrosome number seem to culminate with common responses, which depend on p53 activation even in different contexts such as development or cancer. p53 is a tumor suppressor gene with essential roles in the maintenance of genetic stability normally stimulated by various cellular stresses. Here, we review current knowledge and discuss how defects in centrosome structure and number can lead to different human pathologies. The rapid spread of SARS-CoV-2, the causative agent of Coronavirus disease 2019 (COVID-19), has been accompanied by the emergence of distinct viral clades, though their clinical significance remains unclear. Here, we aimed to investigate the phylogenetic characteristics of SARS-CoV-2 infections in Chicago, Illinois, and assess their relationship to clinical parameters. We performed whole-genome sequencing of SARS-CoV-2 isolates collected from COVID-19 patients in Chicago in mid-March, 2020. Using these and other publicly available sequences, we performed phylogenetic, phylogeographic, and phylodynamic analyses. Patient data was assessed for correlations between demographic or clinical characteristics and virologic features. The 88 SARS-CoV-2 genome sequences in our study separated into three distinct phylogenetic clades. Clades 1 and 3 were most closely related to viral sequences from New York and Washington state, respectively, with relatively broad distributions across the US. Clade 2 was primarily foious Diseases (NIAID), Lurie Comprehensive Cancer Center, Northwestern University Emerging and Re-emerging Pathogens Program. Diagnosis of rib fractures plays an important role in identifying trauma severity. However, quickly and precisely identifying the rib fractures in a large number of CT images with increasing number of patients is a tough task, which is also subject to the qualification of radiologist. We aim at a clinically applicable automatic system for rib fracture detection and segmentation from CT scans. A total of 7,473 annotated traumatic rib fractures from 900 patients in a single center were enrolled into our dataset, named RibFrac Dataset, which were annotated with a human-in-the-loop labeling procedure. We developed a deep learning model, named FracNet, to detect and segment rib fractures. 720, 60 and 120 patients were randomly split as training cohort, tuning cohort and test cohort, respectively. Free-Response ROC (FROC) analysis was used to evaluate the sensitivity and false positives of the detection performance, and Intersection-over-Union (IoU) and Dice Coefficient (Dice) were used to evaluate the segmentaeased clinical time consumed, which established a clinically applicable method to assist the radiologist in clinical practice. A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. The funding sources played no role in the study design; collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication . A full list of funding bodies that contributed to this study can be found in the Acknowledgements section. The funding sources played no role in the study design; collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication . Osteoporosis is a common metabolic bone disease, which always leads to osteoporotic fractures. Biomarkers of bone mineral density (BMD) are helpful for prevention and early diagnosis of osteoporosis. This study aims to identify metabolomic biomarkers of low BMD. We included 701 participants who had BMD measures by dual-energy X-ray absorptiometry scans and donated fasting plasma samples from three clinical centres as a discovery set and another 278 participants from the fourth centre as an independent replication set. We used a liquid chromatography-mass spectrometry-based metabolomics approach to profile the global metabolites of fasting plasma. Among the 265 named metabolites identified in our study, six were associated with low BMD (FDR-adjusted P<0.05) in the discovery set and were successfully validated in the independent replication set. The circulating levels of five metabolites, i.e., inosine, hypoxanthine, PC (O-180/226), SM (d181/210) and isoleucyl-proline were associated with decreased oddty, and the National Natural Science Foundation of China [General Program, 81972089 to Z.X.]. https://www.selleckchem.com/products/Clopidogrel-bisulfate.html Y.Z. was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the National Natural Science Foundation of China [81973032]. Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, with unmet need for the pharmacological therapy. The functions of ATXN7L3 in HCC progression are not known. RNA sequence, quantitative real-time PCR, and western blot were performed to detect gene expression. Chromatin immunoprecipitation was performed to detect possible mechanisms. Immunohistochemical stain was performed to examine the protein expression. Colony formation, cell growth curve and xenograft tumor experiments were performed to examine cell growth in vitro and in vivo. ATXN7L3 functions as a coactivator for ERĪ±-mediated transactivation in HCC cells, thereby contributing to enhanced SMAD7 transcription. ATXN7L3 is recruited to the promoter regions of SMAD7 gene, thereby regulating histone H2B ubiquitination level, to enhance the transcription of SMAD7. A series of genes regulated by ATXN7L3 were identified. Moreover, ATXN7L3 participates in suppression of tumor growth. In addition, ATXN7L3 is lower expressed in HCC samples, and the lower expression of ATXN7L3 positively correlates with poor clinical outcome in patients with HCC.