https://www.selleckchem.com/products/PD-0332991.html Circular RNAs have been shown to regulate cancer tumorigenesis and drug resistance. Recently, circCCND1 is reported to promote laryngeal squamous cell carcinoma; however, whether circCCND1 is implicated in non-small cell lung cancer (NSCLC) remains unclear. In this research, The Cancer Genome Atlas data of lung adenocarcinoma were analyzed to show gene expression and overall survival. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay and cell colony formation assay were utilized to measure cell viability and proliferation of A549 and HCC827. Apoptosis was detected by TdT-mediated dUTP Nick-End Labeling assay. Besides, reverse transcription-quantitative PCR was used to examine gene expression. We observed that circCCND1 was significantly upregulated in lung cancer cells and patients. circCCND1 knockdown attenuated cell proliferation and induced apoptosis under cisplatin treatment. Mechanistically, circCCND1 interacted with miR-187-3p to regulate reactive oxygen species and FGF9 in NSCLC cells. Finally, miR-187-3p was demonstrated to rescue circCCND1 knockdown-modulated chemoresistance of NSCLC cells. In this study, our conclusions facilitate the understanding of NSCLC drug resistance to cisplatin.John Tingle, Lecturer in Law, Birmingham Law School, University of Birmingham, discusses some recent reports on patient safety and clinical negligence.Deep tissue injuries (DTIs) were added to pressure ulcer grading systems in 2009. Since then, they have been associated with the same aetiological processes as other forms of pressure injury (PI). This is despite notable clinical differences in their presentation along with variations in natural history that suggest they are the consequence of processes distinct from those that cause other PIs. Understanding the aetiology of DTIs is essential to guide prevention and treatment in addition to ensuring healthcare governance processes deeply tied to pressure