Altogether, the review shed light on the pharmacological properties of fraxinellone as an antitumor agent and a natural insecticide.Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is the main destructive insect pest of grain crops that occurs in all maize growing regions of the Americas. It has rapidly invaded the Southern China since January 2019. However, the current status of insecticide resistance in S. frugiperda has not been reported in China. In this study, we determined the susceptibility of eight populations of FAW to eight insecticides by an artificial diet incorporation method. The results showed that among eight insecticides, emamectin benzoate, spinetoram, chlorantraniliprole, chlorfenapyr, and lufenuron showed higher toxicity to this pest, while lambda-cyhalothrin and azadirachtin exhibited lower toxicity. Susceptibility of S. frugiperda to indoxacarb was significantly different (10.0-fold for LC50) across the various geographic populations. To investigate the biochemical mechanism of FAW to lambda-cyhalothrin, we performed the synergism tests and the results showed that piperonyl butoxide (PBO) and triphenyl phosphate (TPP) produced a high synergism of lambda-cyhalothrin effects in the two field populations. Sequencing of the gene encoding the acetylcholinesterase (AChE) gene in the two field populations identified two amino acid mutations, all of which have been shown previously to confer resistance to organophosphates (OPs) in several arthropod species. The results of this study provided valuable information for choosing alternative insecticides and for insecticide resistance management of S. frugiperda.Resistance to phosphine fumigation has been frequently reported in insect pests of stored products and remains one of the obstacles in controlling these pests, including Tribolium castaneum. In this study, six field populations of T. castaneum were collected from different localities in China. Bioassay data showed that SZ population was strongly resistant to phosphine, followed by moderate-resistance populations WL and SF and three susceptible populations JX, YN, and ML. In addition, synergism assays showed that piperonyl butoxide significantly increased the toxicity of phosphine in resistant population SZ. Furthermore, CYP346B subfamily genes, CYP346B1, CYP346B2, and CYP346B3, were significantly overexpressed in resistant populations. Expression of CYP346B1, CYP346B2, and CYP346B3 were significantly upregulated following exposure to phosphine. RNAi assays showed that depletions on the expression levels of CYP346B1, CYP346B2, and CYP346B3 resulted in an increase of susceptibility to phosphine in T. castaneum, respectively. Our data demonstrated that CYP346B subfamily genes in T. castaneum were associated with the resistance of phosphine. Moreover, the study also increased our understanding of the molecular basis of phosphine resistance in stored pest insects.Sericulture is a very important and flourishing industry in developing countries. Bombyx mori is a kind of important and well-studied economic insects in the whole world. In China, applying of pyriproxyfen pesticide often resulted in non-cocooning and silk yield reduction. https://www.selleckchem.com/products/epacadostat-incb024360.html However, the effects of pyriproxyfen exposure on immune signaling pathway in fat body of silkworm has not been reported yet now. In the present study, we found that the growth and development of silkworm were significantly affected by pyriproxyfen exposure and the fat body tissues were injured after treatment. It was also showed that the expressions of key genes of PI3K/Akt and CncC/Keap1 pathway can be elevated at 24-96 h after pyriproxyfen exposure. Furtherly, the relative expression levels of detoxification enzyme genes and the activities of detoxification enzymes were both increased by pyriproxyfen exposure. These results provided comprehensive view of fat body injury and gene expression changes in silkworm after pyriproxyfen exposure.Imazethapyr (IMZT) is a typical chiral pesticide with two enantiomers with the R-IMZT having the main herbicidal activity. However, the enantioselectivity of the effects of IMZT enantiomers on human and animals is still unclear. In this study, a nuclear magnetic resonance (NMR)-based metabolomics method and determination of oxidative stress were used to evaluate the enantioselectivity of IMZT enantiomers in mice. The results showed that the R-IMZT caused larger disturbances of endogenous metabolites and the S-IMZT had stronger interferences to oxidation defense system. The significantly perturbed metabolic pathways in mice exposed to the R-enantiomer were the valine, leucine and isoleucine biosynthesis pathway as well as the phenylalanine, tyrosine and tryptophan biosynthesis pathway. However, exposure of mice to the S-enantiomer did not significantly affect the metabolic pathways, but exposure led to an increase of catalase (CAT) activity and an increase in malondialdehyde (MDA) content in the liver. These results indicate that we need to conduct a more comprehensive assessment of the health risks of pesticide monomers in the future. In a word, these results provide more evidence for assessing the differences in health risks of IMZT enantiomers to mammals as well as provide more references for the promotion and use of pesticide monomers in the future.The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a polyphagous agricultural pest with an extensive host plant range. Scopoletin is a promising acaricidal compound whose acaricidal mechanism may occur by disrupting intracellular Ca2+ homeostasis and calcium signaling pathways. However, the underlying mechanism of scopoletin for specific target locations of T. cinnabarinus remains unclear. In this study, a full-length cDNA of the L-type voltage-gated calcium channel (TcLTCC) subunit gene from T. cinnabarinus was cloned and characterized. The expression pattern of the TcLTCC gene in all developmental stages of T. cinnabarinus was analyzed. The gene was highly expressed in larval and nymphal stages and was significantly upregulated after treatment with scopoletin. Knocking down the TcLTCC transcript reduced the sensitivity of T. cinnabarinus to scopoletin. Homology modeling and molecular docking were also conducted. The interaction between scopoletin and TcLTCC showed that scopoletin inserted into the cavity bound to the site of the TcLTCC protein by the driving force of hydrogen bonding.