https://www.selleckchem.com/Bcl-2.html Clinical use of 4-Allylpyrocatechol (APC), a potential antifungal agent from Piper betle, is limited because of its low water solubility. The current study explores the development of the self-nanoemulsifying drug delivery system (SNEDDS) containing APC (APC-SNEDDS) to enhance APC solubility. Results demonstrated that excipient type and concentration played an important role in the solubility of APC in the obtained SNEEDS. SNEDDS, comprising 20% Miglyol 812N, 30% Maisine 35-1, 40% Kolliphor RH40, and 10% absolute ethanol, provided the highest loading capacity and significantly increased water solubility of APC. Oil-in-water nanoemulsions (NE) with droplet sizes of less than 40 nm and a narrow size distribution were obtained after dispersing this APC-SNEDDS in water. The droplets had a negative zeta potential between -10 and -20 mV. The release kinetics of APC from APC-SNEDDS followed the Higuchi model. The NE containing 1.6 mg APC/mL had effective activity against Candida albicans with dose-dependent killing kinetics and was nontoxic to normal cells. The antifungal potential was similar to that of 1 mg nystatin/mL. These findings suggest that APC-SNEDDS are a useful system to enhance the apparent water solubility of APC and are a promising system for clinical treatment of oral infection caused by C. albicans.Currently, there is an increasing use of machine parts manufactured using 3D printing technology. For the numerical prediction of the behavior of such printed parts, it is necessary to choose a suitable material model and the corresponding material parameters. This paper focuses on the determination of material parameters of the Anand material model for acrylonitrile butadiene styrene (ABS-M30) material. Material parameters were determined using the genetic algorithm (GA) method using finite element method (FEM) calculations. The FEM simulations were subsequently adjusted to experimental tests carried out to achieve the pos