https://www.selleckchem.com/products/triparanol-mer-29.html Accurate evaluation of habitat availability for wildlife is relevant for ecological applications. Researchers have frequently used models to simulate habitats thermally suitable for reptiles, but these results have limited application for species highly selective for habitat humidity. Here, we use the biophysical Niche Mapper™ model to investigate impacts of vegetation cover on the habitat quality of a high-elevation forest skink, Sphenomorphus taiwanensis, and to predict changes in habitat suitability in a future warmer climate (3 °C increase in air temperature). We assess habitat suitability with different densities of canopy cover in our study areas using two ecologically relevant estimates for lizards maximum activity time and evaporative water loss (EWL) during the activity season. We measured preferred body temperature and EWL of this species for model parameterization, and behavioral response to EWL to supplement habitat quality assessment. The results indicated that this species is sensitive to EWL and reduces its activity when dehydrated. The model predicted that denser canopy levels increase microclimate cooling and humidity, and that most canopy levels are thermally suitable for this species, as the lizard can thermoregulate to manage adverse temperatures. Nevertheless, increasing canopy density could significantly decrease EWL during activity. In the warmer climate scenario, simulated maximum activity time and EWL changed little because of thermoregulation behavior. Our results suggest that habitat preference of this species is a consequence of water and energy requirements, and we note that combining EWL and maximum activity time data can enhance model accuracy of lizards' habitat quality in a warmer climate.Prevalence of a parasite may be influenced by age of the habitat (= time available for hosts and parasites to colonize habitats), assemblage composition of host and non-host species, or bio