Targeting less abundant amino acid residues on the protein surface may realize site-selective protein modification of natural proteins. The relative hydrophobicity of tyrosine combined with the π-π stacking tendency of the aromatic rings results in generally low accessibility. In this study, site-selective protein modification was achieved by targeting surface-exposed tyrosine residues without using a genetic encoding system. Tyrosine residues were modified with N-methylated luminol derivative under single-electron transfer (SET) reaction conditions. Horseradish peroxidase (HRP)-catalyzed SET and electrochemically activated SET modified surface-exposed tyrosine residues selectively. N-methylated luminol derivative modified tyrosine residues more efficiently than 4-arylurazole under tyrosine click conditions using HRP and electrochemistry. Tyrosine residues that are evolutionarily exposed only in the comple-mentarity-determining region (CDR) of an antibody were selectively modified by tyrosine click reactions. CDR-modified antibodies were applied to in vivo imaging and antibody-drug conjugate (ADC).Two NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)]+ complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (N^N^C, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-a]pyrazine, N^C, 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid N-hydroxysuccinimide ether, and N^N, 4-oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid N-hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters. The surface of the speciel types of particles could effectively penetrate into all cells types under investigation. Nanoparticles were shown to penetrate into the cells more effectively than microparticles. However, positively charged nanoparticles covered with poly(l-lysine) seem to interact with negatively charged proteins in the medium and enter the inner part of the cells less effectively than nanoparticles covered with poly(l-lysine)/heparin. In the case of microparticles, the species with positive zeta-potentials were more readily up-taken by the cells than those with negative values.Interfaces of heterostructures are routinely studied for different applications. Interestingly, monolayers of the same material when interfaced in an unconventional manner can bring about novel properties. For instance, CdS monolayers, stacked in a particular order, are found to show unprecedented potential in the conversion of nanomechanical energy, solar energy, and waste heat into electricity, which has been systematically investigated in this work, using DFT-based approaches. Moreover, stable ultrathin structures showing strong capabilities for all kinds of energy conversion are scarce. The emergence of a very high out-of-plane piezoelectricity, |d33| ≈ 56 pm/V, induced by the inversion symmetry broken in the buckled structure helps to supersede the previously reported bulk wurzite GaN, AlN, and Janus multilayer structures of Mo- and W-based dichalcogenides. The piezoelectric coefficients have been found to be largely dependent on the relative stacking between the two layers. CdS bilayer is a direct band (260 K). Such a low thermal conductivity is lower than that of dumbbell silicene (2.86 W m-1 K-1), SnS2 (6.41 W m-1 K-1) and SnSe2 (3.82 W m-1 K-1), and SnP3 (4.97 W m-1 K-1). CdS bilayer shows a thermoelectric figure of merit (ZT) ≈ 0.8 for p-type and ∼0.7 for n-type doping at room temperature. Its ultrahigh carrier mobility (μe ≈ 2270 cm2 V-1 s-1) is higher than that of single-layer MoS2 and comparable to that in InSe. The versatile properties of CdS bilayer together with its all-round stability supported by ab initio molecular dynamics simulation, phonon dispersion, and satisfaction of Born-Huang stability criteria highlight its outstanding potential for applications in device fabrication and applications in next-generation nanoelectronics and energy harvesting.Clinicians prescribe hundreds of millions of β-lactam antibiotics to treat the majority of patients presenting with bacterial infections. Patient outcomes are positive unless resistant bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), are present. https://www.selleckchem.com/products/CP-673451.html P. aeruginosa has both intrinsic and acquired antibiotic resistance, making clinical management of infection a real challenge, particularly when these bacteria are sequestered in biofilms. These problems would be alleviated if, upon the initial presentation of bacterial infection symptoms, clinicians were able to administer an antibiotic that kills both susceptible and otherwise resistant bacteria and eradicates biofilms. As the most common class of antibiotics, β-lactams could be used in a new drug if the leading causes of β-lactam antibiotic resistance, permeation barriers from lipopolysaccharide, efflux pumps, and β-lactamase enzymes, were also defeated. Against P. aeruginosa and their biofilms, the potency of β-lactam antibiotics is restored with 600 Da .Dynamic controlling the nanoscale presentation of synergistic ligands to stem cells by biomimetic single-chain materials can provide critical insights to understand the molecular crosstalk underlying cells and their extracellular matrix. Here, a stimuli-responsive single-chain macromolecular nanoregulator with conformational dynamics is fabricated based on an advanced scale-up single polymeric chain nanogel (SCNG). Such a carefully designed SCNG is capable of mediating a triggered copresentation of the master and cryptic ligands in a single molecule to elicit the synergistic crosstalk between different intracellular signaling pathways, thereby considerably boosting the bioactivity of the presented ligands. This controllable nanoswitching-on of cell-adhesive ligands' presentation allows the regulation of cell adhesion and fate from molecular scale. The modular nature of this synthetic macromolecular nanoregulator makes it a versatile nanomaterial platform to assist basic and fundamental studies in a wide array of research topics.