The space-group frequency distributions for two types of proteins and their complexes are explored. Based on the incremental availability of data in the Protein Data Bank, an analytical assessment shows a preferential distribution of three space groups, i.e. P212121 > P1211 > C121, in soluble and membrane proteins as well as in their complexes. In membrane proteins, the order of the three space groups is P212121 > C121 > P1211. The distribution of these space groups also shows the same pattern whether a protein crystallizes with a monomer or an oligomer in the asymmetric unit. The results also indicate that the sizes of the two entities in the structures of soluble proteins crystallized as complexes do not influence the frequency distribution of space groups. In general, it can be concluded that the space-group frequency distribution is homogenous across different types of proteins and their complexes.Cells strongly regulate DNA replication to ensure genomic stability and prevent several diseases, including cancers. Eukaryotes and archaea strictly control DNA-replication initiation by the regulated loading of hexameric minichromosome maintenance (MCM) rings to encircle both strands of the DNA double helix followed by regulated activation of the loaded rings such that they then encircle one DNA strand while excluding the other. Both steps involve an open/closed ring transformation, allowing DNA strands to enter or exit. Here, the crystal structure of a dimer of the N-terminal domain of Sulfolobus solfataricus MCM with an intersubunit interface that is more extensive than in closed-ring structures, while including common interactions to enable facile interconversion, is presented. It is shown that the identified interface could stabilize open MCM rings by compensating for lost interactions at an open neighbor interface and that the prior open-ring cryo-EM structure of MCM loading has a similar extended interface adjacent to its open interface.GldL is an inner-membrane protein that is essential for the function of the type IX secretion system (T9SS) in Flavobacterium johnsoniae. The complex that it forms with GldM is supposed to act as a new rotary motor involved in the gliding motility of the bacterium. In the context of structural studies of GldL to gain information on the assembly and function of the T9SS, two camelid nanobodies were selected, produced and purified. Their interaction with the cytoplasmic domain of GldL was characterized and their crystal structures were solved. These nanobodies will be used as crystallization chaperones to help in the crystallization of the cytoplasmic domain of GldL and could also help to solve the structure of the complex using molecular replacement.AMSH, an endosome-associated deubiquitinase (DUB) with a high specificity for Lys63-linked polyubiquitin chains, plays an important role in endosomal-lysosomal sorting and down-regulation of cell-surface receptors. AMSH belongs to the JAMM family of DUBs that contain two insertion segments, Ins-1 and Ins-2, in the catalytic domain relative to the JAMM core found in the archaebacterial AfJAMM. Structural analyses of the AMSH homologs human AMSH-LP and fission yeast Sst2 reveal a flap-like structure formed by Ins-2 near the active site that appears to open and close during its catalytic cycle. A conserved phenylalanine residue of the flap interacts with a conserved aspartate residue of the Ins-1 β-turn to form a closed `lid' over the active site in the substrate-bound state. Analyses of these two residues (Phe403 and Asp315) in Sst2 showed that their interaction plays an important role in controlling the flexibility of Ins-2. The Lys63-linked diubiquitin substrate-bound form of Sst2 showed that the conserved phenylalanine also interacts with Thr316 of Ins-1, which is substituted by tyrosine in other AMSH orthologs. Although Thr316 makes no direct interaction with the substrate, its mutation to alanine resulted in a significant loss of activity. In order to understand the contribution of Thr316 to catalysis, the crystal structure of this mutant was determined. In spite of the effect of the mutation on catalytic activity, the structure of the Sst2 Thr316Ala mutant did not reveal significant changes in either the overall structure or the active-site arrangement relative to the wild type. The Phe403-Thr316 van der Waals interaction is impaired by the Thr316Ala mutation, abrogating the adoption of the closed active-site conformation required for catalysis. Since van der Waals interactions with phenylalanine are conserved across substrate-bound forms of AMSH-LP and Sst2, these interactions may be critical for loop immobilization and the positioning of the isopeptide bond of Lys63-linked polyubiquitin-chain substrates.Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM. We obtained decellularized liver of a Wistar rat, the vascular network and the main components of the ECM of tissue were preserved. H&E staining of histological sections confirmed the removal of cells. DNA content of ECM is equal to 0.7% of native tissue DNA content. https://www.selleckchem.com/products/isa-2011b.html Utilizing scanning probe nanotomogrphy method, we showed sinuous, rough topography and highly nanoporous structure of ECM, which provide high level of mouse 3T3 fibroblast and Hep-G2cells biocompatibility. Obtained LDLF had a high regenerative potential, which we studied in an experimental model of a full-thickness rat skin wound healing we observed the acceleration of wound healing by 2.2 times in comparison with the control.