https://www.selleckchem.com/products/sc79.html Crude extracts and essential oils of A. conyzoides were tested with larva and adult stages of Ae. aegypti mosquitoes to determine their insecticidal properties. The crude extracts and essential oils came from three varieties of A. conyzoides (with white flowers, purple flowers, or white-purple flowers) and from two places on each plant (leaves and flowers), giving six types overall leaf-white (LW); leaf-purple (LP); leaf white-purple (LW-P); flower-white (FW); flower-purple (FP); and flower white-purple (FW-P). Chemical constituents and components of the essential oils were identified using gas chromatography-mass spectrometry (GC-MS). Electron microscopic and histopathological studies were performed to determine the toxicological effects on mosquitoes in terms of morphological alterations. The six types of crude extracts exhibited no activity against individuals in the larval stages. However, six types of essential oils were effective against adult Ae. aegypti females. The mortality of adult Ae. aegypti femaare suitable candidates for use in vector control programmes.In this work, perylene bisimide derivatives (PBI-1 and PBI-2) with tertiary amine groups were designed and synthesized. To control the final morphologies and properties of their aggregates, seven kinds of organic acids were used to alter the self-assembly environment. The influence of organic acids on the morphology of the aggregates was investigated. Photophysical properties of the aggregates were markedly affected by the kind and concentration of the organic acid. The thermal and gas sensitivities of the PBI-1 aggregates were studied with the use of UV-visible spectroscopy and digital imaging. The shift of the UV-visible spectra varied with time, temperature, acid type and acid concentration. Furthermore, PBI-1 aggregates showed a red-to-blue color change after addition of seven organic acids, whereas the color of the PBI-2 aggregates remained red. These