https://www.selleckchem.com/products/gw-4064.html Cauliflower Orange (Or) mutant is characterized by high level of β-carotene in its curd. Or mutation affects the OR protein that was shown to be involved in the posttranslational control of phytoene synthase (PSY), a major rate-limiting enzyme of carotenoid biosynthesis, and in maintaining PSY proteostasis with the plastid Clp protease system. A transposon integration into the cauliflower wild-type Or gene (BoOR-wt) results in the formation of three differently spliced transcripts. One of them is characterized by insertion (BoOR-Ins), while the other two have exon-skipping deletions (BoOR-Del and BoOR-LD). We investigated the properties of individual BoOR variants and examined their effects on carotenoid accumulation. Using the yeast split-ubiquitin system, we showed that all variants were able to form OR dimers except BoOR-LD. The deletion in BoOR-LD eliminated the first of two adjacent transmembrane domains and was predicted to result in a misplacement of the C-terminal zinc finger domain to the opposite siounced effect of simultaneous expression of all BoOR variants in cauliflower Or mutant compared with individual overexpression on carotenoid accumulation suggests an enhanced activity with possible formation of various BoOR heterodimers. Copyright © 2020 Welsch, Zhou, Koschmieder, Schlossarek, Yuan, Sun and Li.Drought is expected to increase in frequency and severity in many regions in the future, so it is important to improve our understanding of how drought affects plant functional traits and ecological interactions. Imposing experimental water deficits is key to gaining this understanding, but has been hindered by logistic difficulties in maintaining consistently low water availability for plants. Here, we describe a simple method for applying soil water deficits to potted plants in glasshouse experiments. We modified an existing method (the "Snow and Tingey system") in order to apply a gradual, moderate water