Biodesulfurization processes remove toxic and corrosive hydrogen sulfide from gas streams (e.g., natural gas, biogas, or syngas). https://www.selleckchem.com/products/BIBF1120.html To improve the efficiency of these processes under haloalkaline conditions, a sulfate and thiosulfate reduction step can be included. The use of H2/CO mixtures (as in syngas) instead of pure H2 was tested to investigate the potential cost reduction of the electron donor required. Syngas is produced in the gas-reforming process and consists mainly of H2, carbon monoxide (CO), and carbon dioxide (CO2). Purification of syngas to obtain pure H2 implies higher costs because of additional post-treatment. Therefore, the use of syngas has merit in the biodesulfurization process. Initially, CO inhibited hydrogen-dependent sulfate reduction. However, after 30 days the biomass was adapted and both H2 and CO were used as electron donors. First, formate was produced, followed by sulfate and thiosulfate reduction, and later in the reactor run acetate and methane were detected. Sulfide production rates with sulfate and thiosulfate after adaptation were comparable with previously described rates with only hydrogen. The addition of CO marginally affected the microbial community in which Tindallia sp. was dominant. Over time, acetate production increased and acetogenesis became the dominant process in the bioreactor. Around 50% of H2/CO was converted to acetate. Acetate supported biomass growth and higher biomass concentrations were reached compared to bioreactors without CO feed. Finally, CO addition resulted in the formation of small, compact microbial aggregates. This suggests that CO or syngas can be used to stimulate aggregation in haloalkaline biodesulfurization systems.Air quality and other environmental factors are gaining importance in public health policies. Some volatile organic compounds (VOCs) have been associated with asthma and symptoms of respiratory disease such as wheezing. The aim of this study was to measure the concentration of Total VOCs and assess their possible association with the occurrence of wheezing episodes in children under 36 months of age, in a region south of Lisbon, Portugal. A cross-sectional study was performed from October 2015 to March 2016. The sample of children under 36 months of age was selected by convenience, by inviting parents to take part in the study. A survey was applied to collect information on bedroom features, as well as to verify the occurrence of wheezing episodes. The indoor air quality parameters of bedrooms were measured using three 3M Quest® EVM-7 environmental monitors. In total, 34.4% of infants had had wheezing episodes since birth, with 86.7% of these presenting at least one episode in the previous 12 months. Total VOC levels were above the reference values in 48% of the analyzed bedrooms. No significant association of VOC exposure in a domestic setting with episodes of wheezing was found. However, children living in households with smokers were 4 times more likely to develop wheezing episodes. Thus, this study provides relevant information that warrants further studies to assess infant exposure to indoor air pollution and parental smoking in a residential context.Even though manganese oxides are attractive materials for batteries, super-capacitors and electro-catalysts for oxygen reduction reactions, in most practical applications MnO2 needs to be hybridized with conductive carbon nano-structures to overcome its inherent poor electrical conductivity. In this manuscript we report microwave-assisted synthesis of MnO2 embedded carbon nanotubes (MnO2@CNT) from Mn-H3BTC (benzene-1,3,5-carboxylic acid) metal organic frameworks (MOF) precursors. Using graphene oxide as microwave susceptible surface, MnO2 nano-particles embedded in three dimensional reduced graphene oxide (rGO) -CNT frameworks (MnO2@CNT-rGO) were synthesized which when applied as electro-catalysts in oxygen reduction reaction (ORR) demonstrated comparable half-wave potential to commercial Pt/C, better stability, and excellent immunity to methanol crossover effect in alkaline media. When carbon fiber (CF) was used as substrate, three-dimensional MnO2@CNT-CF were obtained whose utility as effective adsorbents for arsenic removal from contaminated waters is demonstrated.Girls are less active than boys throughout childhood and adolescence, with limited research focusing on female community sports-based programs. This study aims to assess the effectiveness of a multi-component, community sports-based intervention for increasing girl's physical activity (PA) levels, fundamental movement skill (FMS) proficiency, and psychological wellbeing, as relative to a second treatment group (the traditionally delivered national comparative program), and a third control group. One hundred and twenty female-only participants (mean age = 10.75 ± 1.44 years), aged 8 to 12 years old from three Ladies Gaelic Football (LGF) community sports clubs (rural and suburban) were allocated to one of three conditions (1) Intervention Group 1 (n = 43) received a novel, specifically tailored, research-informed Gaelic4Girls (G4G) intervention; (2) Intervention Group 2 (n = 44) used the traditionally delivered, national G4G program, as run by the Ladies Gaelic Football (LGF) Association of Ireland; and (3) Coonditions.Nowadays, integrated microfiltration (MF) membrane systems treatment is becoming widely popular due to its feasibility, process reliability, commercial availability, modularity, relative insensitivity in case of wastewater of various industrial sources as well as raw water treatment and lower operating costs. The well thought out, designed and implemented use of membranes can decrease capital cost, reduce chemical usage, and require little maintenance. Due to their resistance to extreme operating conditions and cleaning protocols, ceramic MF membranes are gradually becoming more employed in the drinking water and wastewater treatment industries when compared with organic and polymeric membranes. Regardless of their many advantages, during continuous operation these membranes are susceptible to a fouling process that can be detrimental for successful and continuous plant operations. Chemical and microbial agents including suspended particles, organic matter particulates, microorganisms and heavy metals mainly contribute to fouling, a complex multifactorial phenomenon.