https://www.g2.com/products/qwiet-ai/reviews https://www.gartner.com/reviews/market/application-security-testing/vendor/qwiet-ai/product/prezero/review/view/5285186 Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities. How can agentic AI enhance application security (AppSec) practices? Agentic AI can revolutionize AppSec practices by integrating intelligent agents into the software development lifecycle (SDLC). These agents can monitor code repositories continuously, analyze commits to find vulnerabilities, and use advanced techniques such as static code analysis and dynamic testing. Agentic AI can also prioritize vulnerabilities based on their real-world impact and exploitability, providing contextually aware insights for remediation. A code property graph (CPG) is a rich representation of a codebase that captures relationships between various code elements, such as functions, variables, and data flows. By building a comprehensive CPG, agentic AI can develop a deep understanding of an application's structure, potential attack paths, and security posture. This contextual awareness allows the AI to make better security decisions and prioritize vulnerabilities. It can also generate targeted fixes. How does AI-powered automatic vulnerability fixing work, and what are its benefits? AI-powered automatic vulnerabilities fixing uses the CPG's deep understanding of the codebase to identify vulnerabilities and generate context-aware fixes that do not break existing features. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without break