https://www.selleckchem.com/CDK.html "…most complex, new direction for cancer medicine is to integrate our understanding of aberrant genes and pathways to explain the behavior of cancer as a whole, thereby renewing the cycle of knowledge, discovery and therapeutic intervention [...].Since conventional screening tools for assessing frailty phenotypes are resource intensive and unsuitable for routine application, efforts are underway to simplify and shorten the frailty screening protocol by using sensor-based technologies. This study explores whether machine learning combined with frailty modeling could determine the least sensor-derived features required to identify physical frailty and three key frailty phenotypes (slowness, weakness, and exhaustion). Older participants (n = 102, age = 76.54 ± 7.72 years) were fitted with five wearable sensors and completed a five times sit-to-stand test. Seventeen sensor-derived features were extracted and used for optimal feature selection based on a machine learning technique combined with frailty modeling. Mean of hip angular velocity range (indicator of slowness), mean of vertical power range (indicator of weakness), and coefficient of variation of vertical power range (indicator of exhaustion) were selected as the optimal features. A frailty model with the three optimal features had an area under the curve of 85.20%, a sensitivity of 82.70%, and a specificity of 71.09%. This study suggests that the three sensor-derived features could be used as digital biomarkers of physical frailty and phenotypes of slowness, weakness, and exhaustion. Our findings could facilitate future design of low-cost sensor-based technologies for remote physical frailty assessments via telemedicine.To improve ischemia/reperfusion tolerance, a lot of attention has been focused on natural antioxidants. Caffeic acid phenethyl ester (CAPE), an active component of the resinous exudates of the buds and young leaves of Populus nigra L., Baccharis sarothroides