Urban air pollution represents a global problem, since everyday many mutagenic and carcinogens compounds are emitted into the atmosphere, with consequent adverse health effects on humans and biota. Specifically, particulate matter air pollution was associated with increased risks in human mortality and morbidity. In this paper, we analyse the genomic effects on human lymphocytes of different concentrations of annual Turin PM2.5 extract by an in vitro micronuclei assay. Samplings were collected from an urban meteorological-chemical station positioned in Turin (Italy), one of the most polluted cities in Europe. PM2.5 sampled on filters was used for organic extraction in monthly pools and successively aggregated to produce a mixture representative for a full year PM2.5 collection. Lymphocytes were exposed to four concentrations of PM2.5 5, 10, 15 and 20 μg/mL and micronuclei, nucleoplasmic bridges and nuclear buds were scored. With respect to controls, PM2.5 significantly increased the frequencies of all analysed biomarkers at all tested concentrations, whereas the CBPI index was significantly reduced only at the concentration of 20 μg/mL. Such in vitro effects can both to stimulate local authorities to adopt efficient measures for air pollution mitigation and to improve human monitoring to detect early precancer lesions.This study proposed the membrane bioreactor-ultraviolet/chlorine (MBR-UV/Cl2) process for treating polluted surface water with pharmaceutical personal care product (PPCP) contamination. Results showed that MBR-UV/Cl2 effectively removed the organic matters and ammonia at approximately 80% and 95%. MBR-UV/Cl2 was used in the removal of sulfadiazine(SDZ), sulfamethoxazole(SMZ), tetracycline(TC), oxytetracycline(OTC), ciprofloxacin(CIP), ofloxacin(OFX), erythromycin(ERY), roxithromycin(ROX), ibuprofen(IBU) and, naproxen(NAX) at 12.18%, 95.61%, 50.50%, 52.97%, 33.56%, 47.71%, 87.57%, 93.38%, 93.80%, and 71.46% in which their UV/Cl2 contribution was 12.18%, 95.61%, 29.04%, 38.14%, 25.94%, 7.20%, 80.28%, 33.79%, 73.08%, and 23.05%, respectively. The removal of 10 typical PPCPs using UV/Cl2 obtained higher contributions than those of the MBR process, except OTC, ROX, and IBU. The UV/Cl2 process with 3-min hydraulic retention time and chlorine concentration at 3 mg/L effectively removed the trace of PPCPs. MBR-UV/Cl2 has the potential to be developed as an effective technology in treating polluted surface water with PPCP contamination.The oceanic external nitrogen (Nex) deposition to the global ocean is expected to rise significantly owing to human activities. The Southern Ocean (SO) is an important pathway, which brings external influences into the ocean interior. It touches the borders of several developing countries that emit a large amount of anthropogenic nitrogen. To comprehend the dynamics of Nex in the SO, we developed a new method to assess the change in the oceanic uptake of Nex (ΔNex) in the entire SO. We obtained the spatiotemporal distribution of ΔNex in the SO by applying this method to a high-resolution grid data constructed using ship-based observations. During the 1990s to the 2010s, Nex increased significantly by 67 ± 1 Tg-N year-1 in the SO. https://www.selleckchem.com/products/ABT-888.html By comparing this value with the rate of Nex deposition to the ocean, the SO has received ~70% of Nex deposition to the global ocean, indicating that it is the largest uptake region of anthropogenic nitrogen into the ocean interior.Flexible sensors with a high sensitivity and wide-frequency response are essential for structural health monitoring (SHM) while they are attached. Here, carbon nanotube (CNT) films doped with various PVA fractions (CNT/PVA) and ZnO nanowires (nano-ZnO) on zinc sheets were first fabricated by functionalized self-assembly and hydrothermal synthesis processes. A CNT/PVA/nano-ZnO flexible composite (CNT/PVA/ZnO) sandwiched with a zinc wafer was then prepared by the spin-coating method. The piezoresistive and/or piezoelectric capabilities of the CNT/PVA/ZnO composite were comprehensively investigated under cyclic bending and impact loading after it was firmly adhered to a substrate (polypropylene sheet or mortar plate). The results show that the piezoresistive sensitivity and linear stability of the CNT/PVA films doped with 20%, 50%, and 100% PVA during bending are 5.47%/mm, 11.082%/mm, and 11.95%/mm and 2.3%, 3.42%, and 4.78%, respectively. The piezoelectric sensitivity, linear stability, and response accuracy of the CNT/PVA/ZnO composite under impulse loading are 4.87 mV/lbf, 3.42%, and 1.496 ms, respectively. These merits support the use of CNT/PVA/ZnO as a piezoresistive and/or piezoelectric compound sensor to monitor the static/dynamic loads on concrete structures while it is attached.Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer with steadily increasing incidence and poor prognosis. Despite recent success with immunotherapy, 50% of patients still succumb to their diseases. To date, there is no Food and Drug Administration-approved targeted therapy for advanced MCC. Aberrant activation of phosphatidylinositide-3-kinase (PI3K)/AKT/mTOR pathway is frequently detected in MCC, making it an attractive therapeutic target. We previously found PI3K pathway activation in human MCC cell lines and tumors and demonstrated complete clinical response in a Stage IV MCC patient treated with PI3K inhibitor idelalisib. Here, we found that both PI3K-α and -δ isoforms are abundantly expressed in our MCC cell lines and clinical samples; we therefore examined antitumor efficacy across a panel of five PI3K inhibitors with distinctive isoform-specificities, including idelalisib (PI3K-δ), copanlisib (PI3K-α/δ), duvelisib (PI3K-γ/δ), alpelisib (PI3K-α), and AZD8186 (PI3K-β/δ). Of these, copanlisib exerts the most potent antitumor effects, markedly inhibiting cell proliferation, survival, and tumor growth by suppressing PI3K/mTOR/Akt activities in mouse models generated from MCC cell xenografts and patient-derived tumor xenografts. These results provide compelling preclinical evidence for application of copanlisib in advanced MCC with aberrant PI3K activation for which immunotherapy is insufficient, or patients who are unsuitable for immunotherapy.